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1 Avancement des travaux
Durant cette dernière année de projet, nous avons suivi deux voies complémentaires pour

le projet ECLID. Conformément aux engagements pris lors du dernier comité de suivi du
projet, Ophélie Guin s’est rendue à Zurich afin de discuter avec le groupe de Paléoclimato-
logie de D. Frank sur l’utilisation de données dendroclimatiques, et la confrontation de son
approche avec les techniques traditionnelles. Ceci a permis d’obtenir des données ayant une
bonne couverture spatiale, et d’appliquer les techniques développées pendant le projet à une
base de données dendroclimatiques très complète. Le traitement des données est en soi très
lourd en temps de calcul car le nombre de séries est très grand (plusieurs centaines) et les
méthodes probabilistes utilisées demandent des simulations d’un grand nombre de variables
aléatoires.

Ophélie a aussi continué les développements méthodologiques autour de la modélisation
statistique de la croissance des arbres. Ces travaux ont principalement porté sur la sélection
des variables climatiques indépendantes qui expliquent au mieux les variations dendrochrono-
logiques, dans un cadre bayésien. Dans ce cadre, un modèle additif généralisé de dépendance
entre la croissance d’un cerne et des variables climariques est paramétré pour répondre à
un modèle additif généralisé. La difficulté qui a été résolue, face à un trop grand nombre de
variables potentielle pour expliquer une épaisseur de cerne, a été de se placer dans un cadre
bayésien pour la sélection de variable. Cette nouvelle méthode a été testée sur des données
simulées et appliquée à des mesures de densité de cernes d’arbres (Pinus halepensis Mil l.)
enregistrées sur la côte Méditerranéenne française.

Un article a été soumis au Journal of the American Statistical Association, au cours de
cette année. Un autre est en préparation pour une soumission prochaine.

Les applications climatiques et environnementales ont demandé plus de temps que prévu
(notamment à cause de la lourdeur des calculs). Ceci explique un retard de deux mois dans
l’avancement de la thèse d’Ophélie. Ce retard dans la soutenance sera financé par un autre
projet portant sur la dendroclimatologie et la paléoclimatologie (projet ANR MOPERA),
auquel le projet ECLID apporte une expertise en statistiques. Nous prévoyons une soutenance
de thèse à la fin du mois de mars 2011 (i.e. avec un retard de 2 mois par rapport à la date
prévue de fin du projet). Le manuscrit de thèse et la soutenance publique constitueront le
rapport final et définitif du projet.
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2 Mission à l’étranger
Les 15 et 16 avril 2010, Ophélie Guin s’est rendue au Swiss Federal Research Institute

(WSL) à Zurich afin d’y rencontrer David Frank, spécialiste de dendroclimatologie. Le but
de la rencontre était d’avoir l’avis de ce spécialiste sur les techniques statistiques dévelopées
dans le projet, et leur application sur la base de données qu’il développe.

Ophélie a tout d’abord fait une présentation de nos travaux, et en particulier du modèle
que nous avons mis en place pour extraire un signal commun à partir d’un jeu de cernes
d’arbres (voir section 4), devant l’équipe de Paléoclimatologie. Cette présentation a été bien
accueillie par l’équipe et a permis une discussion scientifique intéressante. L’équipe de Pa-
léoclimatologie étant principalement composée de dendrochronologues, les questions ont été
d’ordre technique afin de s’assurer de la compréhension de notre modèle statistiques. Ensuite,
la discussion a dévié sur une question fondamentale : est-ce que notre modèle est meilleur
que les techniques classiques ? Que peut-il apporter de plus à la dendrochronologie ?

Ophélie a longuement discuté des techniques classiques de la dendrochronologie avec
David Frank, ce qui lui a permis d’éclaircir certains points techniques sur les techniques
souvent employées en "boîtes noires" par les dendroclimatologues. Il a également montré
comment se servir du logiciel ARSTAN, couramment employé par les dendrochronologues.

La conclusion de cette visite a été de se lancer dans une comparaison poussée des résul-
tats que l’on obtient à l’aide notre modèle bayésien hiérarchique avec ceux obtenus par des
méthodes classiques de la dendrochronologie. Le but est de définir précisément les avantages
et les inconvénients de chacune des méthodes les unes par rapport aux autres. Pour cela,
David Frank nous a fourni les données qui ont été utilisées pour l’article de Büntgen et al.
(2006), qui reconstruisait les températures d’été pour les Alpes européennes. Ce jeu de don-
nées ayant une taille importante (1270 ans et 180 séries de largeurs de cernes d’arbres) il a
fallu un certain temps pour le faire tourner sur notre modèle et obtenir des résultats. Ces
résultats viennent juste d’être obtenus et nous devont les interpréter dans les semaines qui
viennent.
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3 Conférences
– Extraction de signaux temporels à l’aide d’un modèle Bayésien Hiérarchique - 6ème

Rencontres Statistiques de Rochebrune, 29 mars au 1 avril 2010 - Oral

Résumé : Les statistiques sont devenues une composante essentielle des reconstruc-
tions climatiques, qui sont elles-mêmes extrêmement importantes pour la quantification
du réchauffement climatique global. Ainsi, ces quelques dernières années, il y a eu un
effort de recherche scientifique important afin de combiner de manière spatiale et tem-
porelle différents proxies (c’est-à-dire des mesures indirectes du climat). Généralement,
les statisticiens ne travaillent pas directement avec des mesures de proxies brutes mais
passent par une étape de pré-traitement, appelée standardisation et mise en place dans
le but d’extraire un signal climatique pertinent pour chaque proxy. Ce papier s’intéresse
tout particulièrement à cette étape pour l’un des proxy les plus utilisé : les mesures
de cernes d’arbres. En revenant aux données brutes, on cherche à améliorer l’analyse
statistique des mesures de cernes d’arbres dans l’espoir d’améliorer les reconstructions
climatiques.
L’un des principes de base de la dendroclimatologie est que les cernes d’arbres sont
supposés contenir des informations sur le climat passé. D’un point de vu statistique,
ce problème d’extraction peut être vu comme la recherche d’une variable cachée qui
représente un signal commun à une collection de séries de mesures de cernes d’arbres.
En comparaison avec les études dendroclimatologiques passées, nous proposons un
modèle bayésien hiérarchique semi-paramétrique qui offre la possibilité de capturer les
hautes et les basses fréquences contenues dans les cernes d’arbres. Notre modèle est
testé sur des données simulées et appliqué à des mesures de densité de cernes d’arbres
(Pinus halepensis Mill.) enregistrées sur la côte Méditerranéenne française.

– Sélection bayésienne de variables pour les modèles d’état dans le cadre de reconstruc-
tions climatiques - 42ème Journées de Statistique, 24 au 28 mai 2010, Marseille (France)
- Oral

Résumé : De nombreuses variantes sur la sélection de variables pour un modèle de
régression sous l’approche bayésienne ont été proposées dans la littérature. Dans cette
présentation, nous adaptons cette méthode de sélection de variables à un modèle d’état,
ce qui revient à ajouter une équation à notre modèle de régression. On applique cette
méthode à un problème de reconstruction climatique. En effet, afin de comprendre
si le réchauffement climatique actuel est plus important que la variabilité climatique
naturelle, il est nécessaire d’avoir de longues séries climatiques. Des mesures directes
de température ou de précipitations manquent, en particulier pour les périodes les plus
anciennes, et il est nécessaire d’utiliser des proxies climatiques afin de reconstruire des
chronologies passées. Un proxy bien connu est la croissance des cernes d’arbres. Afin de
comprendre les relations existantes entre ce proxy et des variables climatiques on essaie
d’expliquer la croissance des cernes d’arbres avec la meilleure combinaison possible de
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séries de températures et de précipitations.
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4 Publications

4.1 Extracting hidden trends in tree rings with a semi-parametric
Bayesian hierarchical model

Cet article a été soumis à Journal of the American Statistical Association.

Résumé : Les statistiques sont devenues une composante essentielle des reconstructions
climatiques, qui sont elles-mêmes extrêmement importantes pour la quantification du ré-
chauffement climatique global. Ainsi, ces quelques dernières années, il y a eu un effort de
recherche scientifique important afin de combiner de manière spatiale et temporelle diffé-
rents proxies (c’est-à-dire des mesures indirectes du climat). Généralement, les statisticiens
ne travaillent pas directement avec des mesures de proxies brutes mais passent par une étape
de pré-traitement, appelée standardisation et mise en place dans le but d’extraire un signal
climatique pertinent pour chaque proxy. Ce papier s’intéresse tout particulièrement à cette
étape pour l’un des proxy les plus utilisé : les mesures de cernes d’arbres. En revenant aux
données brutes, on cherche à améliorer l’analyse statistique des mesures de cernes d’arbres
dans l’espoir d’améliorer les reconstructions climatiques. L’un des principes de base de la
dendroclimatilogie est que les cernes d’arbres sont supposés contenir des informations sur le
climat passé. D’un point de vu statistique, ce problème d’extraction peut être vu comme la
recherche d’une variable cachée qui représente un signal commun à une collection de séries de
mesures de cernes d’arbres. En comparaison avec les études dendroclimatologiques passées,
nous proposons un modèle bayésien hiérarchique semi-paramétrique qui offre la possibilité de
capturer les hautes et les basses fréquences contenues dans les cernes d’arbres. Notre modèle
est testé sur des données simulées et appliqué à des mesures de densité de cernes d’arbres
(Pinus halepensis Mill.) enregistrées sur la côte Méditerranéenne française.
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Abstract

Statistics have become an essential component in the field of climate reconstruc-

tions, which is an important topic in quantifying global warning amplitude. In the

last few years, there has been an important statistical research effort to spatially and

temporally combine different climate proxies (i.e. indirect measurements). Still, it is

unfrequent for the statistician to work directly with raw proxy measurements. Typ-

ically, a preprocessing step, often called standardization, is implemented to extract

the relevant climatic signal in each proxy. This paper focuses on this preprocessing

stage for the most used climate proxy, tree ring measurements. By going back to the

1



data source, we focus on improving the statistical analyses of the original tree ring

measurements, and this could ultimately improve climate reconstructions.

One basic premise of dendroclimatology is that tree rings are assumed to contain

hidden information about past climate. From a statistical perspective, this extraction

problem can be understood as the search of a hidden variable, which represents a

common signal within a series of tree ring measurements. Compared to past dendro-

climatology studies, we propose a semi-parametric Bayesian hierarchical model that

offers the possibility to capture hidden low and high frequencies in tree rings. Our

new model is tested on simulated data and applied to tree rings density measurements

(Pinus halepensis Mill.) recorded in French Mediterranean.

1 Dendrochronology and statistical climatology

Recently there have been a strong interest among statisticians, politicians and even blog-

gers concerning the role of statistics within the scientific climate change debate, e.g. see

the transcript of the ASA discussion “Statisticians Comments on Status of Climate Change

Science", March 2010

http://magazine.amstat.org/blog/2010/03/01/climatemar10/,

or the recent JASA comments of the article by Li et al. (2010). One key issue to under-

standing past and recent climate changes is to derive, study and apply efficient statistical

procedures to reconstruct past records of temperatures and precipitation. Direct measure-

ments of such climatological variables are missing whenever the instrumental record length

is shorter than the period of interest. The so-called proxies, i.e. indirect measurements, of-

fer the material to reconstruct past chronologies in such situations.

Tree ring measurements may be the most well known and common climate proxy. Since

the work of Douglass (1920, 1936), there has been an active and extensive research activ-
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ity dedicated to the field of dendrochronology (dendron = tree and chronos = time) that

study tree rings to analyze temporal and spatial patterns of processes in the physical and

social sciences. Journals like Tree-Ring Research (formerly Tree-Ring Bulletin) and Den-

drochronologia, numerous books (e.g. Cook and Kairikukstis, 1990; Gornitz, 2009) and

thousands of articles show the vitality and the importance of tree rings in many fields, e.g.

forest ecology, climatology, archaeology and botany. Within the realm of reconstructions

studies, dendroclimatology focuses on identifying links between tree rings information and

climate variables. Implicitly it is assumed that a climatic signal can be hidden into tree ring

growths. To illustrate the importance of dendrochronology in climatology, we recall the im-

portant and actively commented papers of Mann et al. (1999) and Esper et al. (2002) that

used some tree ring data to reconstruct Northern Hemispheric annual temperatures for the

last millennium. One heated point of discussion in the global climate warming debate was

the statistical analysis of tree ring data in these two papers (Committee on Surface Temper-

ature Reconstructions for the Last 2000 Years, 2006; Mann et al., 2008). To integrate the

information from different sources, Li et al. (2010) studied a Bayesian hierarchical model

to reconstruct past temperatures and they assessed their method via synthetic data generated

from a global climate model. The recent paper by McShane and Wyner (2010) proposed

a different temperatures reconstruction which behaves similarly to past reconstructions but

has much wider standard errors. Smith (2010) highlighted the sensitivity of paleoclimatic

reconstructions to the time period of observational data and to the selection of proxies.

These articles underline the difficulty of analyzing proxies and reconstructing past climate

variables. In contrast to this recent research our goal is neither to propose a new recon-

struction of past temperatures neither to develop a novel way to combine different proxies.

By focusing on a single proxy (tree rings), our main scope is to propose a novel statistical

scheme to extract the most relevant climatological information from tree rings. In other

words we believe that improving the statistical analysis of raw tree ring data, the building

block of most reconstruction studies, could eventually lead to better reconstructions. In ad-
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dition, the method proposed here could be applied to other proxies used in environmental

sciences.

One major advantage of dendrochronology over other dating techniques is that annual ring

formation makes the time sampling, one ring per year, constant in zones that have a distinct

dormant season related to cold weather (most tropical tree species, not studied here, may

not produce distinctive annual growth rings (Stahle, 1999)). A recurrent difficulty associ-

ated with the temporal scale resides in the tree lifetime heterogeneity. Figure 1 shows the

lifetime of the fourteen trees that are used in our applications. The x-axis corresponds to the

years and the y-axis to the tree label. Each individual tree has a different lifetime and some
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Figure 1: The lifetime of the fourteen trees that has been used in our application. The
x-axis corresponds to the years and the y-axis to the tree label.

trees like 4 has a short record while others like 1 contains more information. Typically the

number of sampled trees diminishes as one go back in time. Finding older trees becomes

more and more arduous for the field experimenter. This classical issue in paleo-studies

implies that the assessment of uncertainty can be non-trivial and should vary in time.

Another statistical difficulty in dendroclimatology concerns the delicate choice of the ex-

planatory variables and their time scales. Should the tree ring growth be correlated to the

average of daily precipitation over the summer months, the largest number of consecutive

days without rain during one year, a function of seasonal temperatures or any other choice?

The number of possibilities is nearly endless and depends on the tree species and the re-
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gion of interest. Hence the dendrochronologue expertise is invaluable to pre-select possible

meaningful explanatory variables and this sometimes allows the statistician to view a tree

ring reconstruction problem as a variable selection problem within an inverse regression

procedure. In this paper we decouple tree ring analysis from the selection problem by

treating a different statistical question. Given tree rings measurements from a given site,

how should one extract a hidden common signal from this tree ring data set? Our under-

lined assumption is that the common signal shared by all the trees from a particular site

should be due to an environmental factor, possibly climatic but not necessarily. The clear

advantage of this inquiry is that the extraction of the common component does not depend

on an arbitrary choice of explanatory variables and therefore, the common signal extraction

is clearly decoupled of the selection problem and so can be interpreted independently. This

leaves the possibility that the extracted signal may be linked to non-climatic variables. The

main drawback is that the interpretation of the extracted signal remains an open question.

This issue will be discussed in Section 3.2.

A classical decomposition to represent yearly individual tree ring growths is the following

additive model, often called the linear aggregate model (Cook, 1990; Buckley, 2009),

individual tree-growth = Gt + Ft + Dt + unexplained variability (1)

where t represents a year, Gt corresponds to the age-related trend due to normal physio-

logical aging processes (see Figure 2), Ft to the climatically-related environmental signal

and Dt to disturbance factors, either within the forest stand or outside of it (e.g., insect

outbreaks or fires). In most studies, the site of interest is selected in order to minimize the

possibility of internal and external ecological processes affecting tree growth. In this paper,

we follow this hypothesis and Dt is set to zero. Concerning Gt, Figure 2 displays the ideal-

ized tree age effect curve over time. The juvenile stage with a rapid growth is followed by

a mature stage with a fairly constant growth rate and finally a senescent phase terminates
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the life cycle of the tree. These phases are difficult to capture in actual tree growth time

series. Given a set of trees from the same species, site and environmental surroundings, the

variability among individual age effect components has to be taken into account in order

to discriminate between the distinct environmental signal shared by trees of different ages

and each individual’s own age effect. Although idealized, the scheme in Figure 2 provides

important a priori information about the age effect. It corresponds to a smooth (low fre-

quency) signal and we expect a rather concave shape. These two pieces of information are

rather vague and can be sharpen according to the tree species and region under study. In

this paper the frequency information has been used to guide some of our prior distributions

choice within our Bayesian modeling. The concavity of the age effect curve has not been

imposed a priori and serves rather, as an yardstick to discuss our data analysis.

Figure 2: Idealized tree age effect behavior over time. After a juvenile phase (youth) with
an accelerating rate of growth, the tree enters a mature phase with a roughly constant rate
of growth, follows by a senescent phase with a decelerating rate of growth. In practice it is
difficult to statistically identify with three phases because of changing environmental and
internal factors.
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One of the main dendroclimatologist interests resides in finding the component Ft in Equa-

tion (1). This quest leads to the so-called standardization problem and remains an object

of active research (Melvin and Briffa, 2008; Nicault et al., 2010). Basically individual

trees at an environmentally homogenous site can have their own physiological aging pro-

cess Gt, see Figure 1. They can also share a common element due to the local environ-

ment. Standardization aims at calculating a dimensionless yearly index that reflects this

hidden common environmental chronology. The most popular standardization approach

proposed by dendroclimatologists can be summarized by the following steps (e.g., Melvin

and Briffa, 2008). First an age-related trend is estimated and removed individually for each

measurement to eliminate the age-affect Gt. This is classically done by implementing an

univariate parametric regression (e.g., negative exponential curve (Fritts et al., 1969)) or

a semi-parametric one (Cook and Peters, 1981; Barefoot et al., 1974). Second each mea-

surement is divided by the corresponding fitted value obtained from the regression. This

produces the so-called tree indices that should have a mean of approximately equal to one.

Third the so-called chronology time series, i.e. the standardized dimensionless index, is

calculated as the arithmetic mean of all tree indices for a year. The underlining model

beneath this series of statistical steps is similar to a multiplicative model, i.e. instead of

working directly with the raw tree-growth measurements, their logarithms are modeled

by (1). The inference aspect of this standardization approach is not clear. Each step is

made independently of the previous one. Consequently, calculating valid estimates and

confidence intervals of the final output, the dimensionless index, remains challenging. The

common hidden variable of interest should make the inference fully multivariate. In other

words, univariate techniques have been used at each step while the problem is multivariate

by nature and inferences made of each step are decoupled from each other. This later is-

sue leads to another drawback. By construction, the classical standardization scheme takes

out all the low frequency information contained in tree rings. This due to the removal of

the age-effect. Individually an univariate regression cannot make the distinction between
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two low frequency components, see Gt and Ft in (1). Only, by treating the full set of

trees jointly, one can hope to discriminate between a common smooth climate signal and

other individual ones. For the practitioner, this drawback is very important. It implies

that the classical standardization scheme is only adapted to capture annual variability but

not decadal or centennial trends from tree rings. This is also true for other standardiza-

tion based on ARMA modeling (Guiot, 1987). Recently Boreux et al. (2009) proposed

and studied a Bayesian hierarchical model to extract hidden signal but again, it was under

the hypothesis that smooth trends have already been removed by a preprocessing of indi-

vidual tree rings. The Regional Curve Standardization (RCS) and the Adaptive Regional

Growth Curve (Nicault et al., 2010) are attempts to preserve low frequency climatic in-

formation contained into tree rings. The former is based on producing a global biological

growth trend obtained by averaging ring widths that have been aligned according to their

biological age (not their chronological age). This requires a large number of trees. Another

assumption here is that this structural form is the same for each tree and does not vary in

time. Coming back to (1), this means that Gt comes from an unique profile that has been

shifted according to the tree age. This is rather strong limitation because individual growth

rate trees can differ according to soil conditions, competition and other factors governing

productivity. To circumvent this issue, Nicault et al. (2010) proposed to regress tree rings

according to cambial age, initial and maximum productivities using a neural network. The

initial and maximum productivities are defined as the average of the first 10 rings and the

maximum value during the first 50 years over an individual smoothed growth profile, re-

spectively. Hence the computation of the predictors is tailored to the application at hand

and may be difficult to generalize to other cases without an expert in dendrochronoloy. In

addition, the inference properties of the method are not clear to us because tree rings seem

to be used as predictant and as data for building the predictors.

To summarize our objectives, we aim to propose and study a multivariate model and global

inference scheme capable of extracting hidden individual and common trends. Essential
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elements of our analysis are the modeling of varying uncertainties due to tree lifetime het-

erogeneity, bypassing the need of parametric forms for either individual or common trends

and taking into account the prior information given by dendroclimatologists. To exem-

plify and discuss our approach, we have analyzed a set of fourteen Pinus halepensis Mill.

Figure 3 localizes the site with geographical coordinates (5˚28’E, 43˚4’N) named “Les

Pennes-Mirabeau" and situated along the French Mediterranean coast where tree ring mea-

surements were studied by Nicault et al. (2001). This region is climatically characterized

by a Mediterranean climate with clear summer droughts. Nicault et al. (2001) identified

possible relationships between tree growth measurements and climatic factors in the same

geographical region and with the same tree species. Hence this past study provides a refer-

ential for our extraction procedure and has been beneficial for discussing and interpreting

our approach. Figure 4 displays fourteen Pinus halepensis Mill tree ring density time series
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Figure 3: The “Les Pennes-Mirabeau" site located in the South of France where Pinus
halepensis Mill tree ring densities series shown in Figure 4 were recorded.

(in mg/cm3) from the “Les Pennes-Mirabeau" site. The group of fourteen time series illus-

trates the difficulty of finding a common signal; each time series having its own time length

(see Figure 1), its own growth trend and a large variability. To conclude this short descrip-

tion of the data set, we would like to add that the choice of studying ring density profiles

over other dendrochronological variables like tree ring growths is rather arbitrary. For this

site, our method has also been applied to tree ring growth measurements, to its logarithm
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Figure 4: Fourteen Pinus halepensis Mill tree ring density time series (in mg/cm3) from
the “Les Pennes-Mirabeau" site located in Figure 3. The x-axis (years) covers the period
1903− 1993 and each time series has a different length, see Figure 1.

and to the wood density logarithm. The extracted hidden common signal for each random

variable type appears to be very similar. Consequently we only study one type: tree ring

density profiles.

2 Model description and its inference

During the last two decades, Bayesian Hierarchical Models (BHM) have blossomed in

climate sciences. One appealing idea in BHMs is to probabilistically decompose a com-

plex climatic process and its relationships to observations in several simple components

throughout a hierarchy of layers. BHMs handle efficiently the uncertainty assessment of

each layer by clearly identifying prior and posterior distributions of underlining processes.

For an introduction to such models, see e.g. Gelman et al. (2003) and the forthcoming

book of Cressie and Wikle (2011). Examples of BHM applied to climate issues could be as

follows. Berliner et al. (2000) studied long-lead predictions of Pacific Sea Surface Temper-

atures via Bayesian Dynamic Modeling. Cooley et al. (2005) implemented a BHM to infer

glacial retreats in Bolivia using lichen growths as a proxy. Schliep et al. (2010) estimated
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extreme precipitation from regional climate models by combining BHM and extreme value

theory. Tebaldi et al. (2010) characterized uncertainties of future climate change projec-

tions using BHM and Sahu et al. (2007) studied space-time ozone modeling for assessing

trends. Haslett et al. (2006) investigated the problem of reconstructing prehistoric climates

from lake sediment cores.

Schematically, uncertainty in BHM is spread over different layers, usually three. The base

level, called the data layer, characterizes observations, e.g. tree ring density profiles in our

case. The second level in the hierarchy, called the process layer, models latent processes

that drive the growth of such rings, tree-to-tree and regional variations. In this second layer,

one can start incorporating temporal processes, e.g. individual age effects and the hidden

common environmental factor. The third level, called the parameter layer, consists of the

information concerning prior parameters distributions that control the process layer.

In dendrochronology, Hooten and Wikle (2007) investigated with a BHM shifts in the

spatio-temporal growth dynamics of shortleaf pine. These authors did not work with raw

tree measurements but with chronology indices, i.e. already preprocessed and standardized

data. They linked these chronologies with drought information like the Palmer Drought

Severity Index. Concerning the standardization issue and BHM, Boreux et al. (2009) ex-

tracted an inter-annual high frequency signal from detrended tree ring series and conse-

quently, smooth trends were also overlooked. Compared to these past studies, our goal

is to add the flexibility of modeling non-parametric trends that can capture low frequency

changes for the age effect and higher frequency variations for the hidden common environ-

mental signal.

Denote yj = (yj(t1), ..., yj(tn))T the tree ring measurement vector produced by tree j over

the period of interest (t1, . . . , tn). Equation (1) provides the foundation of our data layer
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that can be expressed with the common notations used by the Bayesian community as

yj|gj, f , βj, σ
2 ∼ gj + βjf + σ2Nn(0n, In), with j = 1, . . . , p, (2)

where the unknown f = (f(t1), . . . , f(tn))T represents the hidden common signal, see Ft

in (1), the unknowns gj = (gj(t1), . . . , gj(tn))T correspond to the individual age effect for

each tree j, see Gt in (1), 0n = (0, . . . , 0)T and In denotes the identity matrix of size n.

Measurement uncertainty is modeled as a zero mean Gaussian vector with covariance σ2In

and each tree record [yj|gj, f , βj, σ
2] is supposed to be mutually independent of each other.

In our application shown in Figure 4, the number of tree p is equal to fourteen and the time

period is defined as t1 = 1903 and tn = 1993. The tree length variation displayed in Figure

1 implies that gj starts or ends with a series of missing values for most trees.

To go one step further in our Bayesian hierarchy, we need to define the process layer, i.e. to

set priors for gj, f , βj and σ2. In contrast to past dendrochronological studies that imposed

a parametric form for gj or f or both, we opt to describe both functions as semi-parametric

splines viewed within a BHM framework.

Splines modeling was formulated by Reinsch (1967) and developed by many author (e.g.,

Eubank, 1999; Wand and Jones, 1995; Fan and Gijbels, 1996). Within the Bayesian frame-

work, Kimeldorf and Wahba (1970) demonstrated that specific forms of spline smoothing

correspond to Bayesian estimates under a class of improper Gaussian prior distributions on

function spaces. For the classical non-parametric regression problem y = f + σ2N (0, I),

Wahba (1978) proposed and studied a particular partially improper Gaussian prior for the

trend f

f |τ 2 ∼ Nn(0, τ 2K−) (3)

where τ 2 = σ2/λ and λ ≥ 0 is the smoother parameter of the classical penalized sum of

squares criterion
�n

i=1(yi − f(xi))
2 + λ

�
(f ��(x))2dx that is minimized over all functions
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f(x) such that the integral exists. In (3), K− refers to a generalized inverse of a matrix K,

with the understanding that an eigenvalue of zero for K gives an eigenvalue of +∞ for K−.

In the case of smoothing splines K is linked to the penalty
�

(f ��(x))2dx = fTKf . Hastie

and Tibshirani (1990, 2000) showed that this prior covariance matrix K− is equal to BΩBT

evaluated at the data. Let nu the number of unique value of x, the basis matrix B consist of

the vector of nu + 2 cubic B-splines basis functions b(x) (de Boor, 1978) evaluated at the

nu sample values xi and the penalty matrix Ω has elements Ωij =
�

b��i (x)b��j (x)dx. Priors

for the smoothing parameter or the variances σ2 and τ 2 belongs to the parameter layer

of the Bayesian hierarchy and they have to be fixed. Hastie and Tibshirani (1990, 2000)

suggested to use proper inverse gamma priors for the variance components σ2 ∼ IG(aσ, bσ)

and τ 2 ∼ IG(a, b).

Following the work of Wahba (1978) and Hastie and Tibshirani (1990, 2000), priors of our

model defined by (2) can take their roots in (3) and consequently we assume the same type

of priors for gj and f

f |τ 2
0 ∼ Nn(0, τ 2

0 K
−) and gj|τ 2

j ∼ Nn(0, τ 2
j K

−), for all j = 1, . . . , p.

At this stage, our model is too versatile and associated with identifiability issues. For ex-

ample, if all gj are proportional to f , it is impossible to distinguish f from gj . Additional

constraints are needed and these have been be chosen according to basic tree ring charac-

teristics. From Figure 2 we know that the individual age effect function gj should be very

smooth because individual tree growth is a rather slow and cumulative process. In con-

trast, we assume that the hidden signal shared by all trees f should capture environmental

variabilities that correspond to rapid (yearly or decadal) changes. This means that the fre-

quency range of gj is assumed to be distinct from the one of f . To illustrate this difference,

Figure 5 displays simulations that mimic this phenomenon. The top and middle panels

represent a simulated common signal f and simulated individual tree growth signals gj ,
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respectively. In this idealized example, one can see that the functions gj do not reproduce

the rapid variations seen in f . To test the resilience of our method, a slow positive trend

was also included into f here and this adds difficulties to separate f from gj , see Section

3.1. The smoothness information can be translated into informative prior choice of the
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Figure 5: Simulations of tree ring measurements from the additive model (2). The top
panel corresponds to the common signal f , the second panel to individual growth tree effect
signals gj and the bottom panel to simulated tree ring series yj , respectively. Our objective
is to find f and gj from the yj’s.

smoothness parameters τ 2
j for j = 0, . . . , p. For comparison and interpretation reasons, we

substitute τ 2
j by a parameter that lives on the interval [0, 1]

ϕj =
σ2

τ 2
j + σ2

, for all j = 0, . . . , p.

If ϕj takes a value near one, then it means that the curve is very smooth. For the tree

data analyzed in paper and after discussions with experts in dendrochronology, we set a
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strongly informative beta prior for ϕj ∼ Beta(100, 1) for j = 1, . . . , p, see the dotted line

in Figure 6. For the parameter describing the smoothness of f , ϕ0 ∼ Beta(2, 10) is also an

informative but with a wider range. The choice insures a kind of orthogonality in the sense

that the priors ϕ0 and ϕj for j �= 0 do not overlap, see Figure 6. The priors for ϕj may seem

very strong but this corresponds to the clear information about the age effect frequency

for the tree species studied in our example. To improve identifiability of the common
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Figure 6: Informative Beta prior densities for the smoothness parameter ϕ0 ∼ Beta(2, 10)
(solid line) of the function f and for ϕj ∼ Beta(100, 1) (dotted line) of the function gj for
j = 1, . . . , p. A value near one (near zero) corresponds to a smooth (jagged) curve.

signal, the function f is constrained to have a zero mean and unit variance. As in any

dendroclimatology studies, the hidden signal f is dimensionless and should be interpreted

as such. Concerning the parameter βj that reflects the contribution of the common factor f

to the growth of tree j, we assume that it is positive and it follows a truncated Normal with

a rather non-informative variance of 10.

To compute the posteriors of the latent vectors and model parameters, we use Gibbs sampler

and Metropolis-Hasting algorithms. Explicitly posterior distribution for some functions can
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be derived (Hastie and Tibshirani, 1990, 2000)

f |β,G, λ0Y, σ2 ∼ Nn(B(BTRB + λ0Ω)−1BT s, σ2B(BTRB + λ0Ω)−1B)

with

s =

p�

j=1

βj(yj − gj), λ0 = ϕ0/(1− ϕ0), R =

p�

j=1

β2
j I

and

gj|βj, f , λjyj, σ
2 ∼ Nn(B(BTB + λjΩ)−1BTd, σ2B(BTB + λjΩ)−1B)

with d = yj −βjf and λj = ϕj/(1−ϕj). It is also possible to show that βj follows a trun-

cated normal posterior distribution and σ2 have an inverse gamma posterior distribution.

These parameters are estimated with Gibbs sampler. The parameters ϕ0 and ϕj don’t have

standard posterior distributions so we use Metropolis-Hasting algorithm to estimate them.

The Bayesian inference was carried out with the open source R statistical software.

3 Data analysis

3.1 Simulations results

From the yj’s displayed in the bottom panel of Figure 5, the posterior probability density

functions (pdf) of our model parameters are obtained. The dotted lines in Figure 7 indicates

the posterior median of g1, g2 and g3 (the same type of graphs can be obtained for gj with

j ≥ 4). Compared to the original g1, g2 and g3 (solid lines), the 95% credibility intervals

(gray area) appear to capture reasonably well the “true" age effect variations. In particular

the smoothness of the estimated gj’s is comparable to the original one. This is not surpris-
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ing and it is mainly due to the strong informative prior put on the parameter ϕj , i.e. a prior

mode around one. The right panels confirm this by showing the posterior pdf of ϕj cen-

tered around the value 0.995. Minor edge effects seem to be present and the 95% credibility

intervals (gray area) reflects this by getting wider around both edges. More interestingly,

the original shape difference between g1 and g3, the latter first increases and then plateaus

in time and the former does the opposite, indicates that such variations among individual

hidden smooth profiles can be found with our approach. From a dendrochronological side,

this distinguishes our method from the RCS one that postulates an unique biological age

trend for all trees (see Section 1).
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Figure 7: Posterior information about the tree age effect gj for j = 1, 2, 3 obtained from
the simulated tree series shown in the bottom panel of Figure 5. The solid and dotted lines
in the left panels correspond to the true gj and the estimated posterior median, respec-
tively. The gray gray area represents the 95% credibility intervals. The right panels display
the posterior pdf of the smoothness parameter the posterior median and 95% credibility
intervals of ϕj for j = 1, 2, 3.

Concerning the main element of our modeling, the temporal evolution of the hidden signal

shared by all trees f is represented by a solid line in the right panel of Figure 8. The poste-

rior median (dotted line) and the 95% credibility intervals (gray area) adequately follow the
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behavior of the true f . As expected from the choice of our ϕ0 prior, quicker variations than

the ones observed in the posteriors pdf of gj’s can be seen in the posterior of f . The right

panel of Figure 8 corroborates this point, the posterior pdf of the smoothness parameter ϕ0

takes its values around 0.15. It is worthwhile to notice that the increasing slow trend in f

is also captured by its posterior. This implies that, although the prior and posterior of ϕ0 is

dedicated to a high frequency range, smooth trends in f can be detected via our approach.

This is due to the combination of two items: the variability among the gj’s and the number

of trees. If all gj had the same shape, say slowly increasing, then it would be impossible

to capture an increasing trend in f . This variability among gj’s should increase with the

number trees, especially if the trees have different ages and therefore span different age

related curves. May be counterintuitively, this means that having a wide range of tree age

effect profiles could be an advantage to detect smooth trend in f . But only if the statistical

extraction is truly multivariate and performs with well-chosen priors for the smoothness

parameters of the gj’s.
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Figure 8: Left panel: posterior median and 95% credibility intervals of the common signal
shared by all trees f obtained from the simulated tree series shown in the bottom panel of
Figure 5. The solid corresponds to the true f . Right panel: posterior pdf of the smoothness
parameter ϕ0.

Different sensitivity analysis concerning the influence of the noise level and the number

of tree on the inference quality were also performed and are available upon request. In a

nutshell, the noise level σ2 can influence the analysis if the noise ratio becomes too large.

Concerning the number of trees, around 10 trees in our simulations were necessary to derive

reasonable results like in figures 8 and 7. However this remark about a minimal number
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of trees is only valid within the framework of our simulations and it should not be directly

transposed to real data because the shapes of f and gj and the variance σ2 strongly depend

on the tree species and the site characteristic.

3.2 Analysis of 14 tree ring density series of Pinus halepensis Mill

Our model and inference scheme have been applied to the fourteen tree density series

shown in Figure 4. The posterior median (solid line) and their associated 95% credibil-

ity intervals (gray area) of the three individual age trends g1, g2 and g3 are shown in the

right panels of Figure 9. As in our simulation study, the curves are smooth by construction

(prior choice of the smoothness parameter) and display a variety of shape (increasing or

decreasing depending on the period and the tree).
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Figure 9: Left panels: posteriors of the three individual age effect trends g1, g2 and g3

obtained from our analysis of the fourteen tree density series shown in Figure 4. Black
lines correspond to posterior medians and gray areas to 95% credibility intervals. Right
panels: posterior pdfs of the smoothness parameters ϕ1, ϕ2 and ϕ3.
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To put our approach into perspective with respect to the RCS method, Figure 10 compares

posterior median of individual age effect profiles gj that have been aligned according to

their biological age (not their chronological age) with the classical global biological trend

obtained by averaging ring widths in function of their biological age (gray line). The line

thickness is proportional to the posterior median coefficient βj . Although a majority of

curves follow a similar shape (an early increase, then one (or two) peak followed by a

decrease), this figure emphasizes the variability among age effect profiles. In particular,

the peak of the RCS biological curve occurs after about 40-50 years. In terms of gj , this

peak date (when available) varies greatly from one tree to another. This tends to indicate

that the added flexibility of our modeling approach allows to improve individual age-related

growth variability. A strong message from Figure 10 resides in the large variability among

the different age effect shapes. Each tree has its own trend and associated uncertainty. And

having this information could help dendrochronologists to interpret local tree behaviors.
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Figure 10: Posterior median of individual age effect profiles gj that have been aligned
according to their biological age (not their chronological age). The line thickness is pro-
portional to the posterior median coefficient βj . The gray line represents the classical global
biological trend obtained by averaging ring widths in function of their biological age.

To better understand the limits of our approach, we had left two other sites called “Rognac"
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and “Gardanne" out of our analysis. These two places have similar environmental and

climatic characteristics than the original site “Les Pennes Mirabeau", see Figure 3 and the

same species of tree has been sampled. The same variable, tree ring density series, has

been modeled independently for each site. Figure 11 compares the extracted signal f for

the three sites. Overall there is a reasonable agreement among the three posterior medians

for f . The 95% credibility interval computed from the fourteen tree density series of “Les

Pennes Mirabeau" seems to contain most of the data points from the two other curves.

None of the curves appears to have a centennial trend. Prior to 1920, the 95% credibility

interval becomes wider because the number of tree decreases around this epoch, see Figure

1 and minor edge effects can also occur.
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Figure 11: Posterior median of the common signal f obtained from trees measured at the
site of “Les Pennes Mirabeau" (solid line), the site of “Rognac" (dashed line) and the site
of “Gardanne" (dotted line). The three sites belong to the same climatological region and
have the same tree species. The 95% credibility interval is computed from the fourteen tree
density series shown in Figure 4.

To conclude this analysis, we briefly investigate potential links between our extracted sig-

nals and climatic variables. Inspired by the work of Nicault et al. (2001), we focus on

one explanatory variable: the sum of Summer daily precipitation recorded over the period

1947− 1993 in Marseille, (latitude = +43:18:18, longitude = +05:23:48 and altitude = 75)
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from the European Climate Assessment & Dataset (ECA&D) (http://eca.knmi.nl/).

One goal of dendroclimatology is to reconstruct climatic variables from tree rings. To per-

form this task, we calibrate our relationships on the period 1961 − 1993 and we leave out

the period 1947− 1960 in order to assess the quality of our predictions. Basic linear mod-

eling indicates a clear link between our extracted f and the logarithm of observed rainfall

(a correlation of 0.63). To a lesser degree, a linear relationship between f and and Spring

daily temperatures seems also plausible, via a correlation of 0.51, but this won’t be ex-

plored here. To visualize if it is possible to bring out relevant rainfall information from

the signal f over the validation period 1947− 1960, Figure 12 compares the reconstructed

log-precipitation (black line) obtained by inverting the linear relationship calibrated over

1961 − 1993 with the measured log-rainfall (grey line), both shares a correlation coeffi-

cient of 0.54 over the validation period. On this graph, we have also added two other re-
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Figure 12: Rainfall reconstruction. The grey line represents the logarithm of observed
total Summer precipitation recorded during 1947-1993 in Marseille, source ECA&D
(http://eca.knmi.nl/). During the period 1961-1993, a linear estimation between
log(rainfall) and the signal f was implemented for the site of "Les Pennes-Meribeau". For
this site, the reconstruction, i.e. inverting a linear relationship, was done for the early time
period 1947-1960 (solid black line). This relationship calibrated for the site “Les Pennes-
Meribeau" was also applied to two fs from two other sites “Rognac" (dotted line) and
“Gardanne" (dashed line).

constructed log-precipitation time series computed from the fs derived from our other two
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sites “Rognac" and “Gardanne". These sites were not used during the calibration period and

Figure 12 displays reconstructed variations over the entire period 1947 − 1993 for which

rainfall data are available and can be compared to. Visual inspections and correlation coef-

ficients of 0.30 (Rognac) and 0.53 (Gardanne) indicate that the reconstructed log(rainfall)

for Gardanne reproduced more efficiently the observed log(rainfall) time series than the

one derived from the Rognac site. Overall this short reconstruction exercise reveals that

our extraction method applied at Pinus halepensis Mill tree ring density series recorded at

three different sites produces hidden common signals correlated with environmental factors

like precipitation.

4 Discussions

From a statistical perspective, the extraction of a common signal shared by all trees remains

difficult because ring growth variations result from complex interactions between climatic

and non-climatic factors. The common signal could be viewed as a representation of the

regional environmental pressure affecting trees over a studied area. To make a very lim-

ited number of statistical assumptions, we opted for combining two semi-parametric spline

models, one for the common hidden signal and one for individual age effects, within a

multivariate Bayesian hierarchical model. Identifiability issues imposed to have a strong

informative prior on the individual age effect frequency. This was not too stringent because

past dendrochronological studies provide such information. The advantage of our approach

is that the variability among individual age effect components is less constrained than with

the classical RCS technique that forces a “one size fits all" age effect curve for all trees.

One consequence of our age effect modeling could be that the common signal is better de-

coupled from the later. We have also chosen to dissociate the extraction problem from the

selection problem. In other words, how to extract a common signal is viewed differently
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from the question, how to explain such an extracted signal with climatic or non-climatic

covariates. This strategy may reduce the chances to make false connections between tree

ring information and supposed explanatory variables.

Our analysis of Pinus halepensis Mill tree ring density series gave encouraging results

in terms of extraction and reconstructions. Similar extracted signals were found at three

different sites and this seems to confirm the regional environmental factor of the extracted

signal, most likely linked with Summer precipitation. Finally we are convinced that it

would be of interest to incorporate a spatial component in our model because the common

signal should correspond to a specific spatial environmental scale. But this was not possible

with the three sites we had for this analysis. Integrating a spatial component in a semi-

parametric context is non trivial for many reasons. Climate variables like precipitation

are associated with large and small spatial patterns while trees may record local variations

at a much finer spatial scale. In addition weather stations and tree ring measurements

are not placed at the same locations. Those spatial discrepancies translate into complex

problems in terms of spatial sampling and change of support within a semi-parametric

BHM framework. It would be of interest to followed some of the ideas developed in Hooten

and Wikle (2007) and Li et al. (2010) to integrate a spatial dimension into our analysis.

Finally an interesting new strategy in climate reconstructions consists in producing an en-

semble of simulated proxy records from forward-process based models (Hughes et al.,

2010; Hughes and Ammann, 2009; Guiot et al., 2009). In this context, the capabilities of

our semi-parametric BHM at simulating synthetic tree-rings densities could be explored.

A possibility could be to constrain the function f with environmental factors. A main dif-

ficulty resides in the strong heterogeneity among the individual age effect, see Figure 10,

and dynamical tree ring growth models could tested from the extracted signal represented

in Figure 10.
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4.2 Bayesian variables selection for Generalized Additive Models
applied to climatic reconstructions

Cet article est en cours d’achèvement et devrait être soumis courant janvier.

Résumé : Afin de comprendre si le réchauffement climatique actuel est plus important
que la variabilité climatique naturelle, il est nécessaire d’avoir de longues séries de tempéra-
tures ou de précipitations. Seulement, les mesures directes manquent, en particulier pour les
périodes les plus anciennes, et il est nécessaire d’utiliser des proxies afin de reconstruire des
chronologies passées. Ce papier s’intéresse tout particulièrement à l’un des proxy les plus uti-
lisé : les mesures de cernes d’arbres. On cherche donc à identifier les relations existant entre
le climat et les cernes d’arbres, c’est-à-dire à choisir des variables climatiques expliquant
au mieux la croissance des arbres. Est-ce que les différentes mesures sur les cernes d’arbres
sont corrélées à la moyenne journalière des précipitations durant les mois d’été ? Aux tem-
pératures saisonnières ? Etc... Le nombre de possibilité et sans fin et dépend de l’espèce des
arbres et de leur région géographique. D’un point de vu statistique, ce problème peut être
vu comme un problème de sélection de variables. En modélisant les relations cernes-climat à
l’aide d’un modèle bayésien additif généralisé, nous proposons dans ce papier une méthode
de sélection de variables afin de déterminer quels facteurs climatiques influencent le plus
la croissance des arbres et comment. Notre méthode est testée sur des données simulées et
appliquée à des mesures de densité de cernes d’arbres (Pinus halepensis Mill.) enregistrées
sur la côte Méditerranéenne française.
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Abstract

1 Climatic reconstruction and tree-rings
In order to understand past and recent climate changes it is necessary to construct long
temperatures and precipitation series. But, direct measurements of such climatologi-
cal variables are missing whenever the instrumental record length is shorter than the
period of interest. Proxies, i.e. indirect measurements, offer the material to recon-
struct past chronologies in such situations. So, one key to understand climate it is to
derive, study and apply efficient statistical procedures to identify link between proxies
information and temperatures or precipitation. One of the the most well-known and
common climate proxy is tree-ring measurements. Since the work of Douglass (1920,
1936), there has been an active and extensive research activity dedicated to the field of
dendrochronology (dendron = tree and chronos = time) that study tree-ring to analyze
temporal and spatial patterns of processes in the physical and cultural sciences. Jour-
nals like Tree-Ring Research (formerly Tree- Ring Bulletin) and Dendrochronologia,
numerous books (e.g. Cook and Kairikukstis 1990) and thousands of articles show
the vitality and the importance of tree-rings in many fields, e.g. forest ecology, clima-
tology, archaeology and botany. To illustrate the importance of dendrochronology in
climatology, we recall the importance and heavily commented papers of Mann et al.
(1999) and Esper et al. (2002) that used tree-ring data to reconstruct Northern Hemi-
spheric annual temperatures for the last millennium. One heated point of discussion in
the global climate warming debate was the statistical analysis of tree-ring data in these
two papers (Committee on Surface Temperature Reconstructions for the Last 2000
Years, 2006; Mann et al. 2008). The recent paper by ? provides a statistical blueprint
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to combine different proxies to reconstruct past temperatures, but it does not focus on
the statistical tree-ring analysis. This will the main object of our paper.

Indeed one of the statistical difficulty in dendroclimatology concerns the delicate
choice of the explanatory variables and their time scales. Should the tree-ring growth
be explained by the average of daily precipitation over the summer months, the largest
number of consecutive days without rain during one year, a function of seasonal tem-
peratures or any other choice? The number of possibilities is endless and depends on
the tree specie and the region of interest at hand. For example it is well documented
that precipitation in Arizona have a strong influence on ... Hence the dendrochrono-
logue expertise is invaluable to preselect possible meaningful explanatory variables and
this sometimes allows the statistician to view a tree-ring reconstruction problem as a
variable selection problem within an inverse regression procedure.

The most common statistical models used by dendrochronologists are called "cor-
relation functions" and "response functions" (Blasing et al., 1984; Fritts et al., 1971).
The term "function" indicates a sequence of coefficients computed between the tree-
ring chronology and the monthly climatic variables, which are ordered in time from the
previous-year growing season to the current-year one. In correlation functions the co-
efficients are univariate estimates of Pearson’s product moment correlation (e.g. Mor-
rison 1983), while in response function the coefficients are multivariate estimates from
a principal component regression model (Briffa and E.R., 1990; Morzukh and Ruark,
1991).

Interpretation of correlation and response functions is favored by an accurate as-
sessment of statistical significance, so that appropriate ecophysiological hypotheses
(e.g. Biondi 1993, Biondi 1997) and paleoclimatic reconstructions (e.g. Biondi 2000,
Biondi 1999) can be generated. In response functions, normal significance levels of
coefficients are misleading because error estimates are underestimated (Cropper, 1985;
Morzukh and Ruark, 1991), hence some coefficients can erroneously pass the signifi-
cance test. This usually causes a grater number of significance coefficients in response
functions than in correlation functions (e.g. Villalba et al. 1994). As a solution, boot-
strapped error estimates can be used to obtain more accurate results (Efron, 1979; Efron
and Tibshirani, 1986; Guiot, 1990, 1991). Correlation functions can also be incorrectly
tested for significance, as explained by Biondi (1997), and it is therefore desirable to
compute bootstrapped confidence intervals for correlation functions as well.

An implicit assumption of these statistical techniques is that climate-tree growth
relationships can be represented by linear models. This assumption holds well in areas
such as the American Southwest, where trees are strongly limited by cool season pre-
cipitation, so that linear regression can be used successfully to reconstruct climate. But,
in areas where multiple climatic parameters control tree growth, and/or where climate
response varies with species and site characteristics, non-linear methods appear more
suitable to identify relationships between tree growth and climate. For example, ex-
perimental data (Fritts, 1976; Kramer and Kozlowski, 1979; Gates, 1980; Evans et al.,
2006) suggest that the dependance of the growth rate function on temperature may be
subdivided into three segments : rising growth rate with increasing temperatures below
growth-optimal temperature range, relatively constant rates within an optimal range of
temperatures and decreasing growth rates above that temperatures range (Figure 1).
To circumvent this issue, some methods were proposed like response surface (Graum-
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lich, 1993) or Neural network (Woodhouse, 1999), but they have not been successfully
tested.
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Figure 1: Tree growth rates function on temperature. The first segment corresponds
to the period of rising growth rate with increasing temperatures below growth-optimal
temperature range (Topt1), the second segment to a relatively constant rates within an
optimal range of temperatures [Topt1,Topt2] and the third segment to the period of
decreasing growth rates above that temperatures range.

In the light of this reflections, we suppose tree-ring growths are not a simple linear
regression of climatic variables but linear regression of climatic data functions. In
this paper, we propose to model relation between tree-rings and climatic factors with
a Generalized Additive Model (GAM). So, from a statistical point of view, we must
solve variable selection problem for GAM. [Bayesian choice].

2 Bayesian Generalized Additive Models
First, we consider a simple one component smoothing problem with data (x1, y1),
(x2, y2), ..., (xn, yn). Here yi are the response values (a tree-ring in our context) and
xi is an input or predictor (temperature, precipitation, etc...). We consider the following
model

yi = f(xi) + εi, εi ∼ N (0, σ2).

A smoothing spline is a popular model for representing f(x), and can be derived as the
minimizer of the following penalized sum of squares criterion

J(f) =
n∑

i=1

(yi − f(xi))2 + λ

∫
(f ′′(x))2dx (1)

over all functions f(x) such that the integral exists. The constant λ ≥ 0 is a smoothing
parameter, with larger values resulting in smoother curves since the curvature is then
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more penalized. For a given value of λ, the solution of this minimization problem, f̂ ,
is a natural cubic spline, with knots at each of the unique values of xi.

Another characterization of f̂ can be obtained through a Bayesian formulation of
the problem. With the distributional hypothesis given above for the observations and
with the following prior distribution on f (Wahba, 1978; Hastie and Tibshirani, 1990),
the Bayesian model can be written as

y|σ2 ∼ Nn(f , σ2I) and f |σ2, λ ∼ Nn
(

0n,
σ2

λ
K−
)

where this last distribution is partially improper (see section 3.6 of Hastie and Tibshi-
rani (1990) for a full discussion). The solution f̂ is then given by the expectation of the
posterior distribution of f .

The notation K− refers to a generalized inverse of a matrix K, with the under-
standing that an eigenvalue of zero for K gives an eigenvalue of +∞ for K−. In the
case of smoothing splines K computes the penalty in (1),

∫
(f ′′(x))2dx = fTKf .

Hastie and Tibshirani (1990, 2000) show that this prior covariance matrix K− is
equal to BΩBT evaluated at the data. Let nu the number of unique value of x, the
basis matrix B consist of the vector of M = nu + 2 cubic B-splines basis functions
b(x) (de Boor, 1978) evaluated at the nu sample values xi and the penalty matrix Ω
has elements

Ωij =
∫
b′′i (t)b′′j (t)dt.

In a Bayesian statistical model, prior distributions also need to be specified for the
variance parameter σ2 and the smoothing parameter λ. This aspect of the problem is
discussed in section ??.

Now, we consider a Generalized Additive Model (GAM). Our data consists of n
observations (y1, ..., yn) and p explanatory variables contained in a matrixX = {xij},
with i = 1, . . . , n and j = 1, . . . , p. We note

xi· = (xi1, . . . , xij , . . . , xip)
′
,

x·j = (x1j , . . . , xij , . . . , xnj)
′
,

where xi· is a column vector p × 1 for the case number i and x·j is a column vector
n× 1 for explanatory variable j. We then have the smooth function, in vector notation,
for the jth explanatory variable

f j = fj (x·j) = (fj(x1j), . . . , fj(xij), . . . , fj(xnj))
′
,

a column vector of dimension n× 1. We get the following model

y =
p∑

j=1

f j + ε, with ε ∼ Nn(0n, σ2In) (2)
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This model, which can also be expressed as a Bayesian model and is the one which
will be studied in this paper :

y|A,θ, σ2 ∼ Nn
(
Aθ, σ2In

)
, (3)

θ|Σ ∼ Nnp (0np,Σ) , (4)

where

A = (In, . . . , In, . . . , In) ,
Σ = Diag (Σj) ,

θ =
(
f ′1, . . . ,f

′
j , . . . ,f

′
p

)′
.

A is a matrix of dimension n × np made up of a row of n × n identity matrices and
Σ, the prior covariance matrix, is a block diagonal matrix of dimension np × np with
diagonal matrix elements Σj = (σ2/λj)K−j , of dimension n × n for j = 1, . . . , p.
The matrices K−j are defined in the same way as in the previous univariate case. As
in the case with one explanatory variable, λj represents the smoothing parameter for
the jth spline function, i.e. the spline function for the jth explanatory variable. The
parameter λj can take values over R+ and therefore in practice, its prior illicitation and
its interpretation from the posterior distribution are difficult. We thus suggest to use an
alternate parameterization

φj =
1

1 + λj
,∀j.

It is directly seen that each φj varies between 0 and 1. It is worth noting that when
λj goes to 0 (interpolation of the data), φj goes to 1, and when λj goes to∞ (linear
relation), φj goes to 0. Therefore, it is possible to specify a prior distribution for
each φj which reflects our knowledge on the type of relation which is anticipated for
an explanatory variable j. We can now write the covariance matrix for the vector of
functional elements, θ, as

Σ = σ2Diag
(

φj
1− φj

K−j

)
.

3 Bayesian variables selection for Generalized Additive
Models

First, we considering the model with 1 explanatory variable, we have
[
y|θ1, σ

2
]
≡ Nn

(
θ1, σ

2In
)
,

[θ1|Σ1] ≡ Nn (0,Σ1) ,

where Σ1 = (σ2/λj)K−1 . The first distribution is proper while the second distribution
is partially improper. From Lindley and Smith (1972; LS72), we get the posterior
distribution of θ1 which is proper (see for example Green and Silverman, 1994)

[
θ1|Σ1, σ

2,y
]
≡ Nn (θ∗1,Σ

∗
1) ,
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where

θ∗1 = (In + λ1K1)−1
y,

Σ∗1 = σ2 (In + λ1K1)−1
.

The marginal distribution is partially improper as can be found by calculating

[
y|Σ1, σ

2
]

=

[
y|θ1, σ

2
]

[θ1|Σ1]
[θ1|Σ1, σ2,y]

.

More explicitly, it is given by

[
y|Σ1, σ

2
]

= (2πσ2)
−(n−2)

2 |In + λ−1
1 K−1 |

−1/2
+ exp

{
− 1

2σ2
y′
(
In + λ−1

1 K−1
)−
y

}
.

So far, nothing has been assumed concerning the prior distributions of the variance
σ2 and of the smoothing parameter λ1 (or equivalently φ1 = 1/(1 + λ1) (see section
2)). Leaving aside φ1 for the moment and assuming that σ2 ∼ IG(aσ, bσ), we then
have the following marginal distribution

[y|λ1,K1] =

[
y|λ1,K1, σ

2
] [
σ2
]

[σ2|λ1,K1,y]
,

which we calculate to be

[y|λ1,K1] =
Γ
(

2aσ+(n−2)
2

)

(πbσ)
n−2

2 Γ
(

2aσ
2

) |In+λ−1
1 K−1 |

−1/2
+

{
1 +

y′
(
In + λ−1

1 K−1
)−
y

2bσ

}−( 2aσ+(n−2)
2 )

This is in the form of a multivariate t distribution; with the notation of Berger (1985)
or Robert (2001), if it was proper, it could be written as

Tn−2

(
2aσ,0, (bσ/aσ)

{
In + λ−1

1 K−1
})
.

It is partially improper though and this is thus a partially improper multivariate t distri-
bution.

Now, if we do the same exercise with p variables, we get

[
y| {λj ,Kj}j=1,...,p

]
=

Γ
(

2aσ+(n−2p)
2

)

(πbσ)
n−2p

2 Γ
(

2aσ
2

)

× |In +
p∑

j=1

λ−1
j K−j |

−1/2
+

×





1 +
y′
(
In +

∑p
j=1 λ

−1
j K−j

)−
y

2bσ





−( 2aσ+(n−2p)
2 )

. (5)
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Finally, concerning the prior distributions for the λjs, it’s better to put prior distri-
butions on the φjs given in section 2. Then, we have the following marginal distribution

[
y| {Kj}j=1,...,p

]
=

[
y| {φj ,Kj}j=1,...,p

] [
{φj}j=1,...,p

]

[
{φj}j=1,...,p | {Kj}j=1,...,p ,y

]

But, here we can not explicitly calculate this distribution. To circumvent this issue we
propose to use a method described by Chib and Jeliazkov (2001). The main idea is that
for appropriate

{
φ∗j
}
j=1,...,p

we have

[
y| {Kj}j=1,...,p

]
=

[
y|
{
φ∗j ,Kj

}
j=1,...,p

] [{
φ∗j
}
j=1,...,p

]

[{
φ∗j
}
j=1,...,p

|y, {Kj}j=1,...,p

]

from which the marginal likelihood can be estimated by finding an estimate of the
posterior

[{
φ∗j
}
j=1,...,p

|y, {Kj}j=1,...,p

]
. Chib and Jeliazkov show a simulation-

consistent estimate of the posterior ordinate is available as

G−1
∑G
g=1 α(

{
φgj , φ

∗
j

}
j=1,...,p

|y)q(
{
φgj , φ

∗
j

}
j=1,...,p

|y)

L−1
∑L
l=1 α(

{
φ∗j , φ

l
j

}
j=1,...,p

|y)

where
{
φgj
}
j=1,...,p

are the sample draws from the posterior distribution with the Metropolis-

Hasting algorithm,
{
φlj
}
j=1,...,p

are draws from the proposal density q(
{
φ∗j , φj

}
j=1,...,p

|y)
and α is the probability to move.

4 Data analysis

4.1 Simulations results
We consider the following full model

y|σ2 ∼ N3(
3∑

j=1

fj(x.j), σ2I3) (6)

where the predictors xj , j = 1, 2, 3 were generated with an uniform distribution [0, 10].
The true model was established with y expected value equal to f1(x.1) + f2(x.2). We
suppose f1(x) = sin(2x + 2), f2(x) = cos(x), f3(x) = 0.5x and σ2 = 0.1. Figure
2 represents simulated y with such a model.
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Figure 2: Simulated data with model (6)

For each possible model, i.e. for all explanatory variables combinations we can
estimate the marginal distribution

[
y| {Kj}j=1,...,p

]
. These results are summarized in

the Table 1. We know the best model have the more important probability, i.e. the
model with the two first variablse in our case. This result seems coherent because this
is the true model.

Selected variables logP (y| {Kj}j=1,...,p)
123 -179.55
12 -173.68
13 -194.93
23 -177.47
1 -176.15
2 -192.45
3 -196.28

Table 1: Estimated marginal distribution for the different models. The first column cor-
responds to the selected explanatory variables and the second column to the logarithm
of associated marginal distribution

Of course, for the arrested model, we can estimate the smooth functions f1(.) and
f2(.). Figures 3 and 4 represent the posterior median for these two estimated functions
there true value used for the simulation. The true functions are represented by a solid
line. The posterior median (dotted line) and the 95% credibility intervals (gray area)
adequately follow the behavior of the true f1(.) and f2(.).
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Figure 3: Posterior information about the function f1(.). The solid and dotted lines
correspond to the true f1(.) and the posterior estimated median, respectively. The gray
area represents the 95 % credibility intervals.
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Figure 4: Posterior information about the function f2(.). The solid and dotted lines
correspond to the true f2(.) and the posterior estimated median, respectively. The gray
area represents the 95 % credibility intervals.
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4.2 True data

5 Conclusion
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