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ABSTRACT

We present, in this paper, a novel paradigm for assessing Alzheimer’s disease and aging by analyzing im-
pairment of handwriting (HW) on tablets, a challenging problem that is still in its infancy. The state of
the art is dominated by methods that assume a unique behavioral trend for each cognitive profile or age
group, and that extract global kinematic parameters, assessed by standard statistical tests or classification
models, for discriminating the neuropathological disorders (Alzheimer’s (AD), Mild Cognitive Impairment
(M(CI)) from Healthy Controls (HC), or HC age groups from each other. Our work tackles these two major
limitations as follows. First, instead of considering a unique behavioral pattern for each cognitive profile
or age group, we relax this heavy constraint by allowing the emergence of multimodal behavioral pat-
terns. We achieve this by performing semi or unsupervised learning to uncover homogeneous clusters of
subjects, and then we analyze how much information these clusters carry on the cognitive profiles (or
age groups). Second, instead of relying on global kinematic parameters, mostly consisting of their aver-
age, we refine the encoding either by a semi-global parameterization, or by modeling the full dynamics of
each parameter, harnessing thereby the rich temporal information inherently characterizing online HW.
To illustrate the power of our paradigm, we present three studies, one regarding age, and two regard-
ing Alzheimer’s. Thanks to our modeling, we obtain new findings that are the first of their kind on this
research field. On aging, unlike previous works reporting only one pattern of HW change with age, our
study, based on a semiglobal parametrization scheme, uncovers three major aging HW styles, one specific
to aged subjects and two shared with other age groups. On Alzheimer's, a striking finding is revealed:
two major clusters are unveiled, one dominated by HC and MCI subjects, and one by MCI and ES-AD,
thus revealing that MCI patients have fine motor skills leaning towards either HC's or ES-AD’s. Our paper
introduces also a new temporal representation learning from HW trajectories that uncovers a rich set of
features simultaneously like the full velocity profile, size and slant, fluidity, and shakiness, and reveals, in
a naturally explainable way, how these HW features conjointly characterize, with fine and subtle details,
the cognitive profiles.

© 2018 Published by Elsevier Ltd.

1. Introduction

1.1. Context and motivation

Alzheimer’s disease (AD), the most common cause of major neu-
rocognitive disorder (or dementia), is a progressive neurodegener-

* Corresponding author.

ative disease, characterized by cognitive dysfunction, particularly
memory impairment and other cognitive skills, that affect a per-
son’s ability to perform everyday activities [4,10]. Given the insid-
ious progression of AD, the first troubles are often misinterpreted
as due to normal aging. AD’s diagnosis criteria are mainly based
on clinical markers (i.e. a significant cognitive decline affecting in-
dividual’s independency), and biological markers. Due to the insid-
ious and slow progress of the disease, research attention has re-
cently focused on Mild Cognitive Impairment (MCI), a health stage
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associated with lower performance in one or more cognitive do-
mains, that does not affect, however, a person’s independence in
carrying out functional activities. About 15-20% of people over 65
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have MCI, among which those with memory-related MCI are more
likely to develop AD [1,74,46,60].

As persons with AD are significantly impacted by episodic
memory impairment, loads of studies have been dedicated to lan-
guage disorders involving spelling, grammatical, syntactic or se-
mantic errors, etc. [5,42,53,58,68,73]. A recent review shows, how-
ever, that AD can be predicted by noncognitive symptoms, in
particular by motor impairment occurring during the preclini-
cal phase and before clinical diagnosis [10]. Several studies have
assessed gait impairment, mild parkinsonian signs, fatigue and
frailty [8,9,33,41], and some works have investigated fine mo-
tor impairment, especially handwriting (HW) changes due to AD
[16,27,28,32,36,66,71,82,84,85]. Indeed, AD induces cognitive and
visuospatial impairment that makes the physical act of writing dif-
ficult, which may trigger HW impairment [24]. The aim of our
study is to characterize handwriting (HW), acquired online from
tablets, in subjects belonging to three cognitive profiles: early-
stage Alzheimer Disease (ES-AD), Mild Cognitive Impairment (MCI)
and Healthy Controls (HC), i.e. subjects with a neurotypical cogni-
tive profile, and also to investigate how HW changes with aging.

1.2. State of the art

HW recognition [57] is a mature technology with several highly
successful commercial applications, whether offline for postal mail
sorting and bank check processing [21,22,49], or online for rec-
ognizing personal notes on smartphones, tablets and PDA devices
[54,48]. HW analysis for health assessment [17,56] has been far less
studied owing to the difficulty and the cost of acquiring data from
patients and the limited datasets obtained as a result, the difficulty
of obtaining reliable annotations, and, above all, the unclear under-
standing of whether HW changes may be symptomatic of cognitive
decline and the onset of a neurodegenerative disease.

Several studies have investigated the link between HW changes
and pathologies like Parkinson [40,47,76,71,81,77], Huntington [52],
Schizophrenia [11], Sclerosis [65], or other health conditions such
as Depression [66] or Emotions [39]. Other works tried to
shed light on the link between HW deterioration and aging
[13,23,35,45,62,70,81]. Such a link is not only fundamental for un-
derstanding how fine motor skills evolve with age, but it may be
key for distinguishing natural from pathological HW changes.

Research on Alzheimer's assessment by HW analysis is still in
its infancy. The state of the art is dominated by methods that
extract global kinematic parameters, e.g. their averages, and then
consider one of the two following schemes: 1) apply standard tests
(e.g. Anova) to assess the statistical significance of each parameter
for discriminating AD and MCI from each other, and w.r.t healthy
controls (HC), or, albeit much less frequently, 2) apply classifica-
tion techniques to identify a user’s cognitive profile. The studies
in the first scheme support the tendency of lower velocity, fluid-
ity, and pressure, as well as larger movement duration and number
of strokes, observed as the health profile declines from HC to MCI
and later on to AD [82,84,66,71,36]. In the second scheme, the ap-
proaches proposed recently [82,36,28] essentially gather the global
parameters above and provide them as input to simple classifiers.
Although they report promising classification rates on some HW
tasks, these studies are prone to overfitting, as combining HW pa-
rameters may lead to a curse of dimensionality given the limited
training data. Interestingly, the studies on age-related HW changes
are similar to those in scheme 1. Based on the same global kine-
matic parameters, they show the general trend that, as age in-
creases, velocity, fluidity and pressure decrease, while in-air time
and pen lifts increase [35,45,62,81,23].

Overall, although statistical tests and classification schemes ob-
tain some promising results, showing the potential of HW in dis-
criminating AD, MCI and HC (or age groups) from each other, they

suffer from serious limitations. First, they consider, in most cases,
only the average values of the kinematic parameters, thus over-
looking HW dynamics and its potential in detecting subtle changes
about the health condition. Such an averaging actually corresponds
to a handcrafted feature extraction that converts raw HW input
into manually-designed features, based on human a priori knowl-
edge. This is a clear shortcoming as it implicitly assumes that the
handcrafted features are the best way to discriminate the cognitive
profiles (or age groups) from each other. Second, these studies as-
sume that each cognitive profile (or age group) is associated with
one HW pattern that distinguishes it from the others. Such an as-
sumption is limiting and restrictive as it discards, from the outset,
the diversity of HW patterns that may characterize a single health
condition (for instance, all HC subjects may not have a fast HW,
while all AD subjects may not write slowly).

1.3. Proposed work

This paper presents a novel paradigm of studying HW changes
with aging or different cognitive profiles, that addresses the limits
above. First, instead of assuming a unique (unimodal) behavior for
each cognitive profile or age group, we relax this heavy constraint
by allowing, for each, the emergence of a multimodal behavioral
pattern. We achieve this by a semi or unsupervised learning to un-
cover homogeneous groups of subjects, and then we analyze the
information these clusters carry on the cognitive profiles (or age
groups). Second, instead of relying on average kinematic parame-
ters, we refine the encoding either by a semi-global parameteriza-
tion, or by modeling the full dynamics of each parameter, harness-
ing thereby the rich temporal information inherently characteriz-
ing online HW. The power of our paradigm is illustrated by three
studies, one on age, and two on Alzheimer’s.

The first study aims to infer different writing styles and their
correlation with age, with an emphasis on people over 65 years.
Based on a set of words produced by each writer, it first consid-
ers a semi-global feature parameterization by encoding the distri-
bution of each spatiotemporal parameter over a fixed number of
bins characterizing coarsely its dynamics. Since writing styles are
unknown a priori, we resort to unsupervised learning to uncover
them in an automatic way. In this respect, we propose a novel
style categorization model, carried out at two levels, word-level
(low level) and writer-level (high level). At the first, a clustering
of words based on their spatiotemporal representation detects the
major writer-independent word styles (clusters). At the second, each
writer’s set of words is converted into a Bag of Prototypes (BoP),
associated with the writing styles detected in the 1st stage. This
BoP is augmented by a descriptor of the writer’s variability across
words to generate the input to a second clustering algorithm that
infers writer styles or categories. The analysis of the age group dis-
tribution over each cluster identifies then the major writing styles
that characterize aging. Unlike previous works reporting only one
pattern of HW change with age, our study unveils three major ag-
ing HW styles, one specific to aged people and two shared with
other age groups.

Our second study seeks to characterize HW alterations associ-
ated with ES-AD and MCI w.r.t HC. Based on a semi-global feature
encoding in a text copying task, it seeks to uncover homogeneous
subject groups (clusters), and then analyzes the extent to which
these groups are correlated with the cognitive profiles. To enhance
the clusters’ quality, a semi-supervised learning is proposed where
a Normalized Mutual Information feature selection scheme guides
a hierarchical clustering algorithm to find the best trade-off be-
tween the number of clusters and the discriminative power of each
w.r.t the three cognitive profiles. Thanks to this method, a striking
finding is revealed: two major clusters are uncovered, one dom-
inated by HC and MCI subjects, and one dominated by MCI and
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ES-AD, thus revealing that MCI patients have fine motor skills ei-
ther close to HC's or to ES-AD’s.

In the third study, we take a leap further by modeling the full
dynamics of HW basic units. The key our approach builds on is
to harness the online HW time ordering to automatically learn,
for each raw kinematic parameter, feature representations [6] in-
stead of considering handcrafted global or semi-global features, as-
sumed implicitly to be discriminant. On a task of writing cursive
I loops, we propose a temporal clustering of the loops considered
as time series, by a K-medoids algorithm taking as similarity mea-
sure DTW (Dynamic Time Warping) that accommodates the sequen-
tial aspect of the data. Our scheme allows a representation learn-
ing from sequences, which is barely addressed in the state of the
art [6]. Applied to loop’s velocity time series, our scheme uncov-
ers a rich set of features simultaneously as a byproduct of the
unsupervised learning itself. Indeed, the latter extracts (learns)
several loop medoids (clusters), each consisting of a different com-
bination of features like the full velocity profile, loop size and slant,
fluidity, etc. We show that this representation learning can be ex-
ploited in several ways. First, by considering a second stage clus-
tering based on the distribution of each user’s input over the loop
medoids or prototypes (first stage clusters), we uncover new ho-
mogeneous groups and study their link with the cognitive profiles.
Second, to show the intrinsic information carried by the 1st stage,
we consider, in a binary HC vs. ES-AD classification task, a Bayesian
formalism that aggregates probabilistically the contributions of the
loop prototypes by leveraging the discriminative power of each.
Third, this temporal representation learning offers the advantage of
being explainable. It does not only automatically extract new HW
features for characterizing ES-AD, that can be visualized and easily
understood, but it also detects clusters and obtains classification
results that are naturally explainable to the medical staff and to
the layman in general. This is important as a neurologist, for in-
stance, rather than being convinced by mere classification rates, is
keen in understanding how the automatic system generates its de-
cision based on the subject’s data.

The rest of the paper is as follows. In Section 2, we present our
approach on characterizing age-related HW changes. Section 3 in-
troduces our work on HW changes for subjects with ES-AD and
MCI w.r.t HC, composed of two approaches, based on HW semi-
global parametrization and full dynamics modeling respectively.
The details of these two approaches are given in Sections 4 and
5. Section 6 concludes the paper and sketches some future direc-
tions of our work.

2. Uncovering writing style changes with aging

Age characterization from HW is fundamental as it may allow
distinguishing normal HW change due to aging from abnormal one,
potentially related to a pathological cognitive decline. In this sec-
tion, we address the problem of age characterization from online
HW. The goal is to detect HW styles and study their correlation
with age, by the analysis of spatiotemporal HW parameters.

2.1. State of the art on aging assessment by HW analysis

Several works have studied HW changes as people age. Some
were carried out through visual inspection [81,35,72,78]. Automatic
studies concerned mostly online HW [23,62,55,70,12], although few
have addressed the offline case [2,1,7]. Because they rely on a rich
set of temporal features and not solely on static ones, the for-
mer have a much larger potential for uncovering parameters that
change with age. This potential is reflected in the state of the art
where, based on standard statistical tests or linear regression, sev-
eral spatiotemporal parameters have been shown to change with

aging, such as increasing in-air time and number of pen lifts [62],
lower writing velocity, pressure and smoothness [23,35,45].

Although they do show the link between aging and HW
changes, these studies suffer from two limitations. First, they con-
sider global kinematic parameters from the whole writer’s text,
thus assuming that they are sufficient to assess different writings.
In doing so, they overlook another useful information: does a per-
son write different words in a similar way, or does s/he show
different spatiotemporal trends from one word to another? this
question has not been addressed before. Second, state of the art
methods assume that HW evolves with age according to a unique
pattern. This rules out the possibility of different evolution pat-
terns, or that for some elders, HW may not change in any signif-
icant way. Different HW aging patterns, however, is a sound as-
sumption as they could reflect different biological aging patterns
within chronological aging [38].

2.2. Proposed approach for age assessment based on online HW
analysis

To tackle these limitations, we have proposed an approach
[44] that relaxes the two assumptions above. First, instead of con-
sidering average HW parameters, we propose a semi-global pa-
rameterization scheme that encodes the distribution of each spa-
tiotemporal parameter over a fixed number of bins, characterizing
coarsely its dynamics. Second, we propose a two-stage clustering
scheme that models the writing style in terms of both the spa-
tiotemporal style and its maintenance/variability across different
words, and that makes possible the emergence of several trends
within a same age group. Next, we describe the feature extraction
phase, the two-stage clustering scheme, the experiments and the
results obtained.

2.2.1. Word-based feature extraction

Online HW words are comprehensively represented by three
temporal functions (x(t), y(t), p(t)) encoding the pen trajectory
and pressure [26]. For each word, we extract two feature types,
dynamic and static. For the first, we extract, for each point
n, the horizontal and vertical velocities, Vx(n)=|Ax(n)/At(n)|
and  Vy(n)=|Ay(n)/At(n), where Ax(n)=x(n+1)-x(n-1),
Ay(n)=y(n+1)-y(n-1) and At(n)=t(n+1)—t(n-1). Vx(n) and
Vy(n) are then quantized each into a four-bin histogram to encode
coarsely their dynamics. We similarly compute local acceleration
and jerk (derivative of acceleration). By adding pen pressure,
its variation, and in-air time duration ratio (in-air duration/total
duration) [62], we obtain 33 dynamic features. For spatial features,
we first remove the velocity effect by resampling HW trajectories
to make constant the distance between consecutive points. Local
direction and curvature angles are then extracted and quantized
each into a histogram of eight bins in the 0°-180° range. We also
consider the number of pen-ups, the average horizontal in-air
length, the number of strokes (segments between two local min-
ima of velocity) and their average length, as well as the average
length of the stroke projection on the X axis, and on the Y axis.
This results in 21 spatial features, which combined to dynamic
features, yield a feature vector of dimension 54.

2.2.2. Two-stage semi-supervised learning

As HW styles are unknown a priori, they are usually inferred
by unsupervised learning techniques [80,64,14], that cluster HW
input into groups, identified as styles. These styles are often in-
ferred at the character, stroke and word levels [14,18]. We believe,
however, that writer style inference should rely not only on this
raw signal information but also on high-level information asso-
ciated with the writer’s variability across words. This motivated
us to propose a two-stage unsupervised approach: the 1st stage
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Fig. 1. SNE projections of 1st stage clusters with color encoding (A) cluster labels, and (B) age distribution; (C) HW samples in each cluster; the color scale here quantifies

the magnitude of Velocity (left column) and Jerk (right).

takes as input the low-level spatiotemporal word representation
(encoded by 54 features), and performs a clustering of the set of
words regardless of writer identity, generating clusters correspond-
ing to text-independent and writer-independent word styles. At the
2nd stage, features are computed at the writer level. Each writer’s
set of words is converted into a Bag of Prototype Words (BPW)
[69] by assigning each word to its closest 1st stage cluster. This
generates a histogram of the writer's word distribution over the
1st stage clusters, that is augmented by the writer pairwise word
distance distribution, quantized over five bins. This two-level rep-
resentation is input to a second clustering, to uncover writer-style
categories by modeling both the spatiotemporal word style, and its
variability across the writer’s words. The detected clusters are then
analyzed in terms of their correlation with age.

Our two-stage scheme can be seen as a clustering-based deep
hierarchical feature representation scheme [15], in which the 1st
stage learns word writing styles inferred from spatiotemporal infor-
mation, and the 2nd stage detects the actual writer style by learn-
ing its words’ variability across the 1st stage word styles. Different
from [15], nonetheless, our hierarchical learning is performed over
two entities, a word in the 1st stage and a writer’s set of words in
the 2nd stage.

We present the results using K-means clustering on both stages
(similar results are obtained with other algorithms such as GMM
or Hierarchical clustering), where the number of clusters is auto-
matically determined by the Silhouette criterion. Hereafter, the 1st
and 2nd stage clusters will be referred to as clusters (C!_w,) and
categories (CZ_A]-). respectively. C'_w, designates the kth cluster of
words, obtained at the 1st stage, while CZ_Aj refers to the age-
related 2nd stage jth cluster of subjects.

2.3. Experiments

2.3.1. Dataset

For evaluation, we use the Ironoff dataset [79] of online HW
word samples, acquired by a Wacom tablet at a sampling rate of
100Hz and a resolution of 300 dpi. Although this set comprises
880 writers, only few are over 60 years. For a more reliable study,
we collected, at Broca Hospital in Paris, HW samples from 25 el-
ders with no diagnosed pathology, with an average age of 72.

The data were acquired on a Wacom Tablet at the same sampling
rate but with a higher resolution (5080 dpi), that we decreased
to match the 300 dpi of Ironoff. Combining both sets, we obtain
27,683 HW words from 905 writers aged from 11 to 86 years old
(y.0.), among which 772 are between 18 and 50. For the 1st stage
unsupervised learning, we use the whole set since the clustering is
word-based. For the 2nd stage, we consider the following six Age
Groups (AG), in a similar way to the state of the art [23]: AGy1_17
(11—17 y.O.), AG]8_35 (18—35 y.o,), AG}6_50 (36—50 y.o,), A651_65 (51—
65 y.0.), AGgg_75 (66-75 y.0.), and AGys_gs (76-86 y.0.). To properly
evaluate the clustering and its correlation with age, we select, from
the whole set, a balanced subset in terms of age groups by retain-
ing 26 writers for each, thus generating a total of 156 writers.

2.3.2. First stage clustering for unsupervised characterization of
age-related HW patterns

Based on the Silhouette method, the 1st stage uncovers an op-
timal number of nine clusters. To visualize the clustering quality,
we use Stochastic Neighbor Embedding (SNE) [34], a nonlinear di-
mensionality reduction technique that optimally maps the points
from a high dimensional space onto a lower space by preserving
pairwise distances as much as possible. The left of Fig. 1 shows
the words projected by SNE from the 54-feature dimensional space
onto two dimensions; color in Fig. 1.(A) encodes age (from dark
blue (youngest) to yellow (eldest)) while it encodes cluster labels
in Fig. 1.(B). By Overlaying (A) over (B), remarkable findings are
brought to light: we clearly observe a correlation between age and
HW, as reflected by some groups of aged people emerging auto-
matically from our 1st stage clustering. In particular, cluster C!_w,
stands out as it is mostly associated with aged people. We also
note that clusters C'_ws, C'_wg and C'_wgq are partially associated
with aged writers.

Fig. 1.(C) shows word samples in each cluster, encoded by the
velocity and jerk magnitudes. These words highlight the main HW
patterns that emerge from HW data, summarized in Table 1.

If we focus on clusters C!_w,, C!_ws;, C!_wg and C!_wy, i.e. the
ones significantly represented by the oldest age groups, AGgg_75
(26 people) and AG7s-gs (26 people), two main aging tendencies
stand out: C!_w, and C?_wg represent small-size HW, with a verti-
cal script style, low velocity and jerk, and medium pressure, while
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Main characteristics of 1st stage clusters (C'_wy). Vi and V), stand for horizontal and vertical velocity,
and V for its magnitude. The same applies for Acceleration and Jerk.

Dynamics Slant Pressure  Curvature Pen-up frequency
C'_wy Low V, A, and J Upright Medium  Round Strokes Medium
C'_w,  Verylow V, A, and J Upright Low Round Strokes High
C'_ws  HighV, A and J Right Slant ~ Medium  Straight Strokes  High
C'_w, Moderate V, A, and J Right Slant  High Straight Strokes ~ Medium
C'_ws  Moderate V, A, and J Upright Medium  Medium High
C!_wg Moderate V), low Vy Upright Medium Medium Medium
C'_wy Moderate V, A, and J Upright Medium  Round Strokes Medium
C'_wg  High Vi, moderate Vy  Upright Medium  Upright Strokes High
C'_wg  Very high V, A, and J Right Slant ~ Medium  Upright Strokes Medium
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Fig. 2. SNE projections of the subjects from the 14-dimensional space onto two dimensions, labeled by color according to (A) 2nd stage categories (C2_A; to C?_Ag), and (B)
Age, from youngest (blue) to oldest (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

C'_w; and C'_wg represent a right slanted cursive style, with very
fast dynamics and medium to low pressure, C'_ws characterizing,
in addition, large size HW.

2.3.3. Second stage clustering for unsupervised characterization of
age-related HW patterns

At the 2nd stage, each writer is described by 14 features, nine
encoding his/her word distribution over the 1st stage clusters, and
five encoding the distribution of his/her word pairwise distances.
Our clustering of writers detects eight clusters or categories based
on the silhouette criterion. Fig. 2 shows the SNE projections of the
eight categories on the set of writers, where each writer is en-
coded by age color in Fig. 2.A, and by label color in Fig. 2.B. Again,
we observe a striking relationship between the categories and age
groups, with particularly category C?_Ag standing out, as it is com-
prised mostly of aged subjects.

To emphasize the link between HW changes and aging, we an-
alyze for each category, the sizes of the oldest age groups, i.e.
AGgs.75 and AG7g.gg, W.I.t the other age groups. Table 2 reports the
size and percentage of AGgg_75 and AG_gg Within each (2nd stage)
category, and Fig. 3 shows the age distribution for each category

w.r.t to the initial balanced age distribution (1/6 for each group).
For instance, age group AGs;_g5’s percentage in C?_A; is two, as it
is twice more represented in C2_A; than it was before clustering.
Fig. 3 reveals an important fact: four categories (C2_A,, (2_As3,
(2_As and (?_A;) do not comprise any writer from AGgg.75 Or
AGy6.36, and only three categories (C2_A;, C2_A4, and C(?_Ag) con-
tain a significant number of aged writers. The distribution of the
1st stage clusters within each 2nd stage category is depicted in
Fig. 4, while Fig. 5 reflects this distribution in a visual way, through
representative word samples. The major findings follow below.

B (%_Ag clearly stands out: it includes virtually only subjects
over 65, as the {AGgg.75 +AG76.86} set represents 84% of the
subjects (Table 2). As shown in Figs. 4 and 5, C(?_Ag’s sub-
jects write words mostly captured by C!_ws, characterized by
lowest velocity, acceleration and jerk, as well as round HW
with the highest number of strokes and smallest stroke length
(Fig. 1.(C) and Table 1). As C(?_Ag contains the highest num-
ber of persons (44 writers among 156, i.e. 28%), and 71% of
the {AGgs_75 +AG75-g6} Ssubjects, this could reflect a major ag-
ing trend, characterized by slow and curved HW, with medium
to high in-air time, probably induced by writing hesitations due
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Table 2
Size and percentage of AGgs_75 and AGrg_g¢ within each (2nd stage) category.
CA CA CA CA CA CA CA Chg
Size 18 16 10 29 10 44 16 13
AGess 1% 0% 0% 21% 0% 39% 0% 6%
AGrss  22% 0% 0% 7% 0% 45% 0% 0%
C A, C A, C A, A, C? Ag C? Ag C A, C? Ay
2t 2
1f} 1
123456 123456 123456 123456 123456 123456 123456
Fig. 3. Age group distribution in each category of the 2nd stage.
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Fig. 4. Distribution of the 1st stage clusters within each 2nd stage category.
Slow Speed High Speed the highest velocity, acceleration and jerk, which is the oppo-
— — site behavior to (2_Ag's. C?_A; is also characterized by words
. [ LY, \ g S s with large size as shown by Fig. 5 visually, and by Fig. 4 that
C2_4; A %,_-3_ 4 | ANV e indicates a high value for C!_ws in the (?_A; category. C!_ws,
U ‘ > 5 & ? precisely, corresponds to large size (Fig. 1.(C) and Section 2.3.2).
C’ A4, et Vg s % e B (?_A, represents 15.4% of AGgg.75 and AGyg.gg, and is character-
: 2 » ized by a HW with medium velocity, very low horizontal jerk,
C’ A4 S, S0 S e ool . ery
23 r 4’ 7 e s medium pressure, and low pressure variation.
A, Getilbo 4N AeAneA © In summary, unlike previous works reporting a unique HW pat-
5 Bl e .- tern change with aging, our study unveils three major aging HW
e T SRS ’e L . .
¢ A4 »,“_’_(3 VO & Secouraen styles, one specific to aged people and characterized by slower and
C? A4 PrrmleA 2200 oty AP P 1ES§ fluid HW, and two, Shared‘WIth the the.r.age groups, charac.—
= - terized mostly by high dynamics and variability. In the future, it
A, |I w‘;‘y.e, Je A /.,\.. 3 AU might be interesting to _lmk our findings w1_th the wqus _seekmg
. to study how chronological aging features different biological ag-
C? Ag Ledoent Ve Cpwunions ing patterns, healthier and unhealthier [38].

Fig. 5. HW Samples from each category of the 2nd stage, showing velocity on a
color scale.

to mild cognitive decline. These tendencies are a hallmark of a
slower and less fluid HW. C?_Ag is also characterized by words
written with small size, as shown by Fig. 5 visually, and by
Fig. 4 that indicates a high value for C'_w, in the (?_Ag cat-
egory. C!_w,, precisely, corresponds to small size (Fig. 1.(C) and
Section 2.3.2).

B C2_A; represents 11.5% of the oldest age groups, AGgg.75 and
AG76.86, and consists of a HW style closer to that of AGsg.sg,
in terms of dynamic features. The subjects in this group have

3. Uncovering writing style alterations with Alzheimer’s and
MCcCI

3.1. State of the art on Alzheimer’s assessment by HW analysis

Over the last decades, loads of research studies have investi-
gated the link between HW changes and pathologies like Parkinson
[76], Huntington [52,71], Schizophrenia [11], Sclerosis [65], or other
health conditions such as Depression [66] or Emotions [39]. In par-
ticular, Parkinson disease (PD) has intensively been studied through
the analysis of fine movements, acquired on a digitizer. The tar-
get tasks for these studies required particular finger and wrist
coordination, like the Archimedes spiral, concentric circles, and
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handwriting input [75,59]. In addition to Micrographia (small size
writing or drawing), several spatiotemporal parameters as move-
ment duration, velocity, and fluency were reported to be effective
in discriminating PD patients from HC [77].

Although several studies have been proposed for AD’s assess-
ment by online HW analysis since the late 1990s, this research
field is still in its infancy. Characterizing Alzheimer’s at an early
stage is a challenge, since the onset of the disease is insidious.
As there is high heterogeneity of Alzheimer’s profiles, and as some
MCI patients can convert into Alzheimer's, characterizing AD re-
quires studying the MCI class, and thus developing techniques for
discriminating between three classes (AD vs. MCI vs. HC), which
brings additional complexity w.r.t Parkinson’s (only two classes).

State of the art methods on Alzheimer's assessment by HW
analysis essentially extract global (average) kinematic parameters,
and then consider one of the two following schemes: 1) apply
standard tests (e.g. Anova) to assess the statistical significance of
each parameter for discriminating a pathological population from
a healthy control one, or, albeit less frequently, 2) apply classifica-
tion techniques to identify a subject’s cognitive profile based on a
multidimensional description of his/her HW.

The studies in the first scheme depend on factors such as the
HW task (copying a text, sentence, loop series, etc.), and the num-
ber of cognitive profiles under study (e.g. {HC vs. MCI vs. AD} or
{HC vs. AD}), but they tend to assert overall that lower velocity, flu-
idity, and pressure, as well as larger movement duration and num-
ber of strokes, are observed as the health profile declines from HC
to MCI and later on to AD [82,84,66,71,36]. These findings, however,
are sometimes disconfirmed or even contradicted [82,85]. This may
be explained by the strong implicit assumption in these studies
that each cognitive profile features a unique behavioral pattern,
which is not realistic, as our study on age in Section 2 has shown
for HC. Indeed, a discriminant parameter in one study may turn
out not discriminant in another if the fine motor skills of MCI sub-
jects in the former are statistically more impaired. Such a discrep-
ancy is likely given the small datasets usually considered. Worse,
considering early-stage AD only as opposed to an AD all-inclusive
study may heavily impact the results, as it is much easier to detect
high significant HW impairments in subjects with advanced AD.

In the second scheme, the few approaches proposed recently
[82,36,28| essentially gather the global kinematic parameters
above and provide them as input to a Linear Discriminant Analy-
sis (LDA) or a logistic regression classifier [63]. Although they report
promising classification rates on some HW tasks, these studies suf-
fer from overfitting as the number of HW parameters quickly leads
to a curse of dimensionality, given the limited training data. Some
reported results are misleading as they are obtained on the very
data the classifiers are trained on [28,82].

3.2. Proposed work on Alzheimer’s assessment by HW analysis

Assessing  HW disorders associated with pathologies like
Alzheimer’s amounts to detecting pathological HW deteriorations
w.r.t writing style changes due to normal aging. The main issue, in
this regard, is that there is no agreed-upon definition of deteriora-
tions or changes. Fig. 6 shows same HW samples from six people
that underline this issue.

Whether one looks to static or velocity (encoded by color) in-
formation, it is hard to identify clues that discriminate the cogni-
tive profiles from one another. Actually, the two HW samples on
the left are associated with HC, the two in the middle, with M(],
and the two on the right, with ES-AD, and as the figure shows,
mere global assessment of the statistical significance or the dis-
criminative power of kinematic or even distortion-related param-
eters is doomed to failure in realistic settings. The figure shows
that a subject might produce a writing that is slow or fast, large or

small, upright or slanted, legible or less so, etc., regardless of the
cognitive profile s/he belongs to. The average velocity or distortion-
based features, therefore, are unlikely to discriminate the three
classes.

To tackle the issues above and the limitations of the state of the
art, we propose a novel paradigm for studying HW changes due
to ES-AD and MCI w.r.t HC, inspired by our study on HW changes
with aging. Instead of considering a unimodal behavioral pattern
for each cognitive profile, we relax this restriction by allowing,
for each, the emergence of a multimodal behavioral pattern. The
key idea is to perform semi-supervised learning with the objec-
tive of uncovering clusters of subjects, and then to analyze how
these clusters characterize the cognitive profiles. In addition, in-
stead of relying on (global) average spatiotemporal parameters, we
refine the encoding either by a semi-global parameterization, or by
modeling the full dynamics of each parameter, harnessing thereby
the rich temporal information inherently characterizing online HW.
We present next the corpus and data acquisition, and then detail
our studies with these two types of HW Dynamics’ encoding in
Section 4 and Section 5 respectively.

3.3. Corpus and data acquisition

Online HW data were acquired at Broca Hospital in Paris from
three groups, Healthy Controls (HC), Mild Cognitive Impairment
(MCI), and Early-Stage Alzheimer’s (ES-AD). All ES-AD were diag-
nosed on the basis of DSM-5 criteria [3]. To be with Early-Stage AD,
a patient was required to have a MMSE over 20, MMSE (Mini Men-
tal State Examination) [3] being a clinical scale based on a ques-
tionnaire for assessing cognitive impairment, with a score up to 30
(no impairment). On their side, HC subjects underwent neuropsy-
chological tests to ensure they have a normal cognitive profile. All
the subjects from the three cognitive profiles had to be over 60, to
read and talk French fluently, and to sign a consent form. Patients
with visual impairment or any medical problem, such as stroke
and other neurodegenerative diseases, were excluded. The corpus
consists of 144 participants, 28 HC , 87 MCI, and 29 ES-AD, with
a mean-age of 73.2 (+5.7), 78.5 (£7.6), and 79.9 (+6.4) respec-
tively. HW was acquired on a WACOM Intuos Pro Large tablet with
an inking pen. A paper was fixed on the tablet to allow a visual
feedback as in natural conditions. The tablet records, with a sam-
pling rate of 125Hz, the pen’s position (x(t), y(t)) and pressure p(t)
over time, and the pen’s in-air trajectory up to two cm off the ta-
ble. The participants were asked to perform seven tasks involving
copying texts, loop series, and drawings.

4. Alzheimer’s and MCI assessment by semi-global
parametrization of HW

Inspired by our study on age, we propose in this section to
characterize HW alterations due to ES-AD and MCI, w.r.t HC, based
on a semi-global feature encoding. The objective is to uncover
homogeneous subject groups (clusters), and then to analyze how
these groups are correlated with the cognitive profiles. To this end,
we consider the task of copying, by each participant, of the follow-
ing text in French, extracted from Antoine de Saint-Exupéry’s Le
petit prince: “Tu n’es encore pour moi qu'un petit garcon tout sem-
blable a cent mille petits garcons. Je ne suis pour toi qu'un renard
semblable a cent mille renards. Voici mon secret : on ne voit bien
qu'avec le cceur. L'essentiel est invisible pour les yeux.”

4.1. Text-based feature extraction
On each point n of the pen trajectory, we extract point-

wise kinematic parameters such as horizontal and vertical ve-
locity {Vx(n),Vy(n)} and its first and second derivatives, i.e.
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Fig. 7. The evolution of V,(n), Ay(n) and J,(n) along the HW text, for two subjects. The values of the three parameters for subject 2 are much higher, reflecting a much faster

writing.

acceleration {Ax(n).Ay(n)}, and jerk {Jx(n)Jy(n)} (Fig. 7). We also ex-
tract pointwise spatial parameters related to direction #(n) and
curvature ®(n), and temporal parameters such as duration of pen-
lifts between consecutive words, and within words. At the stroke
level, we extract several parameters such as stroke duration and
length, and normalized jerk [75], defined as the derivative of accel-
eration normalized w.r.t stroke length and duration. Other point-
wise parameters, such as pen pressure and its variation, are also
included. A stroke is defined as the pen trajectory comprised be-
tween two consecutive extrema of y(n) (i.e. at Vy(n)=0, where
Vy(n) is the pointwise vertical velocity). We obtain, as a result, 46
parameters, 22 pen-down features, and 24 pen-up features. Each
feature is then discretized into a histogram of five bins, consist-
ing of the relative frequency of the feature temporal values in each

bin. Considering 5 bins allows for a slightly higher level of granu-
larity, w.r.t to the 4 bins used by our age study, for encoding the
dynamics in a coarse way.

4.2. Semi-supervised learning

We propose a new approach that generates subject clusters,
and analyzes their correlation with the three cognitive profiles. As
the optimal number of clusters and the subset of semi-global spa-
tiotemporal features that are discriminant are both unknown, we
consider a semi-supervised learning in which a Normalized Mutual
Information feature selection guides a clustering algorithm to op-
timize the trade-off between the number of clusters and the dis-
criminative power of each w.r.t the three cognitive profiles.
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To analyze the quality of each semi-global feature F; (vector of
five bins) in discriminating the three classes (ES-AD, MCI and HC),
we perform a Hierarchical Clustering [61] of subjects, based on F,.
Then we compute the Mutual information (MI) between the classes
and the obtained clusters as follows:

N¢ Na p(cl A)
MI(C, A) = é;p(Ck’ Ai)10g2<p(ck)p(Ai)) v

where C and N¢ are respectively the set and number of clusters,
while A and N, are respectively the set and number of classes
(ES-AD, MCI and HC). The better a feature, the greater the asso-
ciated MI. As MI increases with the number of clusters, optimiza-
tion with Eq. (1), leads to obtaining singleton clusters, consisting
each of one person. Thus, to determine the optimum number of
clusters, we consider, instead, the Normalized Mutual Information
(NMI) defined as follows:

NMI(C,A) = % (2)
where H(C) is the cluster entropy:
H(C) = _:XC]:P(Ck)lOgZ(p(Ck)) 3)
and H(A) is_the class entropy [20]:
H(A) = —%:p(Ai)logz(p(Ai)) (4)

i=1

The denominator of Eq. (2) is a tight upper bound of MI(CA),
guaranteeing that NMI is always between zero and one [43]: one
corresponds to highest heterogeneity or disorder, when the per-
sons’ cognitive profiles are equally distributed in each cluster,
while one reflects complete homogeneity or order, when only one
cognitive profile is observed in each cluster. Our feature selec-
tion process by semi-supervised learning consists of the following
steps:

Step 1: For each feature,

(a) Perform Clustering with different sizes (number of clusters);

(b) Compute the NMI for each clustering size;

(c) Select the optimal number of clusters, namely the one maxi-
mizing NMI;

Step 2: Select the best feature F; (i = 1), namely the one maxi-
mizing the NMI, based on Step 1;

Step 3: Forward Feature Selection:i=2

Repeat

Select the ith best feature F;, i.e. the one that, combined with
the previous (i—1) selected features, maximizes NMI, based on
the optimal number of clustersi=i+1

Until NMI no longer increases.

4.3. Experimental results and discussion

Our algorithm of NMI-based conjoint feature selection and clus-
tering detects three clusters and the following three features, se-
lected in a decreasing order: Fi: Number of extrema in the in-air
vertical velocity, F,: Time between words, Fs: Vertical pen-down jerk.
The kth cluster is here referred to as C_t,. The letter ¢ refers to the
text the clustering is based on, and superscript 1 or 2 is dropped,
as there is a single clustering stage that characterizes both features
and subjects. Table 3 shows the distribution of HC, MCI and ES-AD
over these three clusters.

Table 3

The distribution of HC, MCI and ES-AD
over the three clusters (C_t;), based on the
three selected features.

HC Mc  ES-AD  Total
ct, 2 1 4 7
c, 3 50 22 75
Cts 23 36 3 62
Total 28 87 29 144

4.3.1. Analysis of the obtained clusters

We observe that the first cluster C_t; is very small (comprises
5% of persons) and thus can be ignored when analyzing the main
trends (we postpone its analysis to the end of this section). Most
people pertain to one of the two major clusters, C_t, (52%) and
C_t3 (43%), from which a striking finding is revealed: C_t, is dom-
inated by ES-AD and MCI subjects, while C_t3 is dominated by HC
and MCI. From these two clusters, two major interpretations can
be drawn:

(i) Leaving aside MCI subjects, the selected features discriminate
HC from ES-AD: C_t, comprises 22 ES-AD (76% of ES-AD sub-
jects) and only 3 HC (11% of HC subjects), while C_t3 com-
prises 23 HC (82% of HC) and only 3 ES-AD (10% of ES-AD).
This is remarkable as we include only subjects with early stage
Alzheimer’s, and this confirms that alterations do show up in
the HW of AD subjects at an earlier stage.

Despite this, few HC are mixed with ES-AD in C_t, and few ES-
AD are mixed with HC in C_t3. This confirms our claim that
these two cognitive profiles are not homogeneous, but rather
may contain subgroups with different behaviors.

Current state of the art treats MCI as a monolithic entity by re-
porting that some HW parameters discriminate MCI as a whole
from the other cognitive profiles, and that some do not. Our
findings, by contrast, reveal that MCI patients are split over C_t,
(57%) and C_t3 (41%), and this shows that they have fine motor
skills shared either by HC's or by ES-AD’s. This corroborates the
definition of MCI as a transitory phase between HC and AD, and
our results are the first of their kind to show two MCI's HW
behavioral trends, one leaning towards HC's and one towards
ES-AD's.

—
—-
=

—

(iii

=

4.3.2. Analysis of the selected features

Among the three selected features, one is a pen-up feature (F;),
one is a pen-down feature (F3), and one is the time between words
(F). This shows that these three types of spatiotemporal features
are important to detect different writing styles, those characteriz-
ing cognitive impairment in particular. Features F; and F, seem to
be relevant as they require visual short-term memory skills when
copying the words, one after another, while F3 characterizes the
writing movement fluidity.

As described in Section 4.1, each feature is encoded over five
ordered bins, the first and last representing the frequency of the
low and high feature values, and the bins in between representing
the intermediate values. To characterize the HW of each cluster, we
show, in Fig. 8, the distribution of each selected feature’s bins over
the three clusters. The major observations follow below.

B F;: the 1st bin shows a lower value for C_t, w.r.t C_t3, while the
opposite is observed for subsequent bins. This means the num-
ber of extrema of pen-up vertical velocity tends to be higher in
C_t,, a finding that reveals that the subjects in C_t,, dominated
by ES-AD and partially by MCI, have a less fluid HW, character-
ized by a larger number of velocity changes in pen-up trajecto-
ries.

B The distribution of F, shows roughly the same trend as Fi,
meaning that the time between words tends to be higher in
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Fig. 8. Distribution of the three selected 5-dimensional features over the clusters (C_t; (green), C_t, (red), and C_t; (yellow)). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

C_ty. This reveals that the subjects of C_t, spend more time
in copying words one after another, due probably to cognitive
impairment inducing hesitations and more back and forth eye
movements from the text to be copied to the tablet writing sur-
face.

B The distribution of F3 shows the opposite trend to that of F,
and F,, meaning that the vertical pen-down jerk tends to be
lower in C_t,. This is not surprising as jerk' is highly correlated
to velocity and acceleration, and thus the subjects in C_t, are
characterized by lower jerk as they write more slowly.

To summarize this feature comparison, we can conclude that
the subjects of C_t, write more slowly, less fluidly and with more
hesitations. As the subjects in this cluster consist of most ES-AD
subjects and of about 57% of MCI, this means that fine motor im-
pairment characterizes not only early stage AD, but also, and to a
large extent, its preclinical phase. Fig. 9 shows some HW samples
representing C_t, and C_t3, that highlight the two different behav-
ioral trends: slow HW for C_t,, characterizing most ES-AD and a
significant part of MCI, and fast HW for C_t3, characterizing most
HC and another significant part of MCI.

4.3.3. Link with our study on age

The writing style characterizing C_t, shows some similarities
with age category 6, C?_Ag, in our study of age, that uncovered
a subgroup of the oldest age groups, AGgg-75 and AGg_gg, With a
proper writing style, not shared with other subjects from these
two groups and from the other age groups, and characterized by
the lowest velocity, acceleration, jerk, with a medium to high in-air
time. This suggests that the AGgg_75 and AGs_gg Subjects in (2_Ag
might have a cognitive decline that share some fine motor skill
impairments with ES-AD and a part of MCI. This may also mean
that the three HC subjects pertaining to C_t, are similar to those

1 Jerk corresponds here to pointwise jerk over time and is not to be confused
with the normalized jerk per stroke, found in some studies to be correlated with
tremor.

of C2_Ag, which explains why they end up with most ES-AD in the
same cluster.

4.3.4. Analysis of tiny cluster C_tq

This cluster is composed of 2 HC, 1 MCI, and 4 ES-AD.
Fig. 8 shows clearly that, w.r.t C_t, and C_t3, C_t; is mainly charac-
terized by a much more frequent high number of extrema of in-air
vertical velocity, and long time between words (3rd, 4th and 5th
bins of F; and F, are much higher), as well as a much more fre-
quent low vertical pen-down jerk (4th and 5th bins of F3 are much
lower). This corresponds to a neat writing characterized by very
slow movement and poor fluidity (Fig. 10), as the subjects resort to
frequent stopping, generating thereby more velocity extrema (min-
ima and maxima). The subjects spend also a larger time between
words, which again favors a tidy writing.

This peculiar writing style deserves special attention as it char-
acterizes none of the three cognitive profiles. It requires further
analysis to rule out potential annotation issues, and to scrutinize
other metadata of the subjects, by checking whether additional
factors may explain why their writing is so distinct from the rest.
That said, however, this cluster indirectly highlights one of the
main strengths of our framework, and plays a key role regarding
the quality of the obtained clusters. Despite its tiny size, isolat-
ing automatically C_t; allowed discarding few subjects, but with
outlier-like HW dynamics, which enabled the model to unveil the
two major behavioral trends featured by clusters C_t, and C_t3.
Without our automatic detection of three homogeneous clusters,
C_tq would have “corrupted” its closest cluster, C_t, (with slower
HW than C_t3) and compelled the clustering algorithm to split the
subjects therein in several tiny groups, loosing thereby the emer-
gence of the meaningful and reliable behavioral trend of C_t,.

4.3.5. Comparison of semi-global with global parameterization

To assess our semi-global feature parameterization w.r.t to the
global one, which is adopted by the state of the art, we run the
same study as above but by considering this time global features.
Based on the Normalized Mutual Information (NMI) scheme, the
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Fig. 10. Text samples from the tiny cluster, pertaining to 1 HC, 1 MCI, and 1 ES-AD.

Table 4

The distribution of HC, MCI and ES-AD
over the three clusters (C_tgy), based on
the nine selected global features.

HC MC  ES-AD  Total
Ctg, 19 37 2 58
Ctz, 7 48 21 76
Cigs 2 2 6 10
Total 28 87 29 144

detected number of clusters is again 3, shown in Table 4, with an
uncovering of a similar behavior of the MCI class, split over two
clusters (one related to HC and one to ES-AD), with again a tiny
cluster of 10 subjects (2 HC; 2 MCI; 6 ES-AD). The fact that the MCI
class is split into two parts confirms its bimodal behavioral trend
unveiled with semi-global parameterization. Interestingly, the tiny
cluster above comprises all the seven subjects (2 HC; 1 MCI; 4 ES-
AD) of the analogous one, obtained in Section 4.3.4 with the semi-
global setting. This consistency means that these subjects have a
HW style so slow and tidy that they are set apart from the rest, re-

Table 5
NMI values for global and semi-global feature parametriza-
tion. For the latter, each feature is encoded by five bins.

NMI  Number of features
Global parameters 0.10 9
Semi-global parameters  0.14 3x5

gardless of the granularity of the feature encoding adopted, global
or semi-global.

Despite these similarities, however, the NMI value, as shown
in Table 5, is higher for our semi-global parametrization, which
proves its better discrimination of the three cognitive profiles (ES-
AD, MCI, HC). Fig. 8 sheds light on the reason why: a general obser-
vation, indeed, is the overall significantly decreasing size from bin
1 to bin 5 regardless of the features. Despite their small size, how-
ever, the last bins correspond to infrequent but subtle events, that
are important for discriminating different writing styles, as this is
shown for Fy, F, and F;. Without our semi-global parametriza-
tion allowing an automatic detection of such subtle events, the bin
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Fig. 11. Four llll series from subjects with different cognitive profiles. Color encodes
the velocity dynamics.

values encoding these events would have been diluted into the
global values through the averaging process.

In terms of features, nine global parameters are selected: Task
duration, average pen-down velocity magnitude, average horizontal
in-air velocity, average pressure variation, average normalized in-air
jerk, average number of extrema of pen-down vertical velocity, av-
erage vertical in-air jerk, Total pen-down time, Total in-air time. As
in the semi-global parameterization case, the selected global fea-
tures convey information from both the in-air trajectory and the
on-tablet one. Four out of nine are kinematic (velocity and jerk-
based), and three are temporal.

If we disregard the dimensionality, the number of selected
semi-global parameters is much lower (3 vs. 9). However, as they
are encoded over five bins, an additional selection of a semi-global
parameter implies adding five dimensions, which limits the num-
ber of selected features, given the small size of the training dataset.
On a larger dataset, we can expect a larger improvement gap of the
semi-global parameter setting over the global one.

A final remark is that, w.r.t our study on age, our semiglobal
parametrization scheme for assessing HC, MCI and ES-AD, is based
only on a unique clustering stage. This is because our spatiotem-
poral parameters are computed over the whole text. An improve-
ment, in this regard, is to consider a two-stage clustering, where
the first operates on words instead of the whole text, and the sec-
ond clusters the subjects based on the distribution of the set of
words of each subject over the first stage clusters. To do this, how-
ever, a reliable segmentation of the text into words needs first to
be performed.

5. AD and MCI assessment by representation learning from HW
trajectories

Encouraged by our findings with semi-global feature encoding,
we take a leap forward by modeling the full dynamics of HW
strokes, in a task involving writing four series of four cursive con-
catenated I loops (llll) (Fig. 11). As modeling the HW trajectory for
cognitive assessment has not been addressed before in the liter-
ature, we have chosen the loops series to study its potential, as
they allow a text-dependent study that can reveal clearly the be-
havioral trends related to the subjects’ health conditions, by dis-
carding from the outset any variations due to change of words or
characters. Once the potential is confirmed, the approach can be
applied in a straightforward manner to any other task.

The key our approach builds on is to harness the online HW
time ordering to automatically learn, for each raw kinematic pa-
rameter, feature representations [6] in an unsupervised way, in-

stead of considering handcrafted global or semi-global features, as-
sumed implicitly to be discriminant. The modeling of HW dynam-
ics for feature representation has never been considered before, es-
pecially, in the context for health assessment.

Our modeling relies first on automatically segmenting the (ll11)
series into individual loops. The segmentation allows to signifi-
cantly increase the size of the training data, and accordingly the
reliability of the clustering. It also allows generating individual
loop-based clusters, that are much more likely to be homogeneous
than would be the clusters of entire 111l series.

We show next how this representation learning can be ex-
ploited either in a semi-supervised setting to uncover the link be-
tween homogeneous clusters and the cognitive profiles, or in a su-
pervised one for classification.

5.1. Segmentation into loops and feature extraction

We segment each continuous llll series into isolated instances
of letter 1, from which we keep only the loop part for subse-
quent feature extraction. The segmentation process is the follow-
ing: a low-pass filter is applied to smooth Vy(n), the vertical ve-
locity signal of the Il series, by setting the cutoff frequency to the
series’ fundamental frequency. We then apply the inverse Fourier
transform and segment the trajectory at points n where Vy(n)=0.
Each loop is then retrieved by merging its two consecutive strokes,
a stroke being the portion between two consecutive points with
Vy(n)=0. This process is illustrated on Fig. 12.

As shown by Fig. 12, setting the cutoff frequency to the funda-
mental frequency allows to segment the loops, irrespective of the
irregularities and tremors in shaky handwriting, in a much reliable
way than manually-based thresholding techniques would.

We extract, at each loop point, the velocity in x and y direc-
tions, Vx(n) and Vy(n). An illustration of these velocities is given
in Fig. 13 that shows the temporal velocity magnitude |V(n)| for
some loop samples. For the studies below, we use only velocity to
encode HW but we will show how the other features can be inte-
grated as well.

5.2. Two-stage clustering

In this task, the number of subjects is 141 (27 HC, 87 M,
27 ES-AD), three less than those participating in the text copy-
ing task considered by the semi-global approach (three people did
not perform the loops’ task). As each person writes four llll se-
ries, the number of total segmented loops is 2263 (a little more
that 16 x 141 as few subjects produced sometimes more than four
1 loops).

We consider a two-stage clustering based on the loop’s veloc-
ity’s trajectory. To model HW’s full dynamics, we propose a tem-
poral clustering of the loops, considered as time series, by a K-
medoids algorithm taking as similarity measure DTW (Dynamic
Time Warping) that accommodates the data sequential aspect. This
clustering generates a dictionary of prototype medoids, regardless
of the cognitive profile, that serves as input to the 2nd stage clus-
tering. The latter then computes for each subject the distribution
(histogram) of his/her loops over the medoids (1st stage clusters).
Hereafter, the 1st and 2nd stage clusters will be referred to, respec-
tively, as C'_l, and C2_D;. Here, C!_l, designates the kth cluster of
loops (hence the letter 1), obtained at the 1st stage, while CZ_DJ»
refers the jth cluster of subjects with different cognitive profiles
(HC, MCI or ES-AD), and obtained at the 2nd stage. Letter D stands
for Disease, in order to distinguish the second clusters here from
those related to age in Section 2.



124 M.A. El-Yacoubi et al./Pattern Recognition 86 (2019) 112-133

(a) (b) © (d O]

10 Z 10
2 2 2 25 8 5 7 ] 9
77 mp |2 DA AN |y [ 5AAAA 7
Ll LE|WEST T T BRI T WL A L
0 0.5 g 1.5 2 0 0.5 1 1.5 2
n (Time in second) n (Time in second)
() (b) (© (e

=

w
W

Vi(n) (cm/s)
(=3

0% 2 3 4 °5 6 7
n (Time in second)

=

V(n) (cm/s)
<

2.3 4 5 b 7

= =

@

n (Time in second)

Fig. 12. Loop segmentation: (a) input loops series; (b) the Vy(n) signal, (c) low-pass filtering by the fundamental frequency; (d) segmentation into ascending and descending

strokes; (e) extraction of the loops. Top: fluid writing; bottom: shaky writing.
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Fig. 13. Loop samples with color encoding velocity magnitude: red stands for high
values, and blue for low ones. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

5.2.1. First stage clustering

Fig. 14 shows the results for K=8 and K=30 medoids. In each
case, the K medoids are the major prototypes of the total set of
loops produced by HC, MCI and ES-AD, and as shown, they repre-
sent a large diversity in terms of dynamics and shape. Each medoid
reflects a different and rich combination of several loop features
including full velocity profile, size, slant, fluidity, etc.

Fig. 14 also shows the effect of increasing the number of clus-
ters. For K=8, the medoids represent the major prototypes in
terms of velocity, size and slant, as they attract, each, a relatively
large number of loops. A much higher K (e.g. 30 here), by con-
trast, allows the medoids to capture, each, only the loops they are
close to. This allows the algorithm to detect new prototypes with
much subtler spatiotemporal dynamics, such as very fast medoids,
or those with moderate and mostly low velocity but with shaky
writing that induces loss of smoothness and fluidity. High values
of K, nonetheless, imply that the obtained clusters have a relatively
low size. This underlines the importance of choosing a K value
granting a good trade-off level between the depth of details in the
medoids and the representativeness of the associated clusters, de-
pending on the data size and the classification task.

1cm
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Fig. 15.(A) displays samples from four loop clusters when K=8
(4 chosen among 8). These clusters were selected as they convey
the main tendencies observed for other clustering results with sim-
ilar but different K values. Each row corresponds to a cluster and
includes, for presentation clarity, only the closest loops to their
medoid, which appears first. Along with each cluster’s index, we
display the number of loops it contains, as well as their distribu-
tion over the three cognitive profiles. As shown, each cluster is as-
sociated with a unique combination of several HW features like the
full velocity dynamics profile, fluidity, shakiness, slant, and even,
to a large extent, size. This is remarkable, as the input to clus-
tering is merely loop raw velocity trajectories, which confirms that
our scheme allows an unsupervised representation learning from se-
quences, a problem that is not addressed by state of the art repre-
sentation learning [6]. The rich set of features conjointly uncovered
shows the key advantage of modeling the full sequence of each
loop instead of simple statistics such as the average of each spa-
tiotemporal parameter, taken separately.

A more in-depth analysis of each cluster gives us insights on the
behavioral trends of the three cognitive profiles. If we leave aside,
for the moment, the MCI class, we observe the following main ten-
dencies (Fig. 15.(A)):

W C'_l, contains loops mostly originating from HC (64 HC; 4 ES-
AD), characterized by highly fluid loops with moderate size, and
medium to high velocity on their ascending and descending
phases. ES-AD subjects, therefore, seem to have trouble with
maintaining this typical writing style.

2 In Fig. 13, the loop sizes are mostly homogeneous. The variations that appear
on some clusters can be explained by the small number of clusters (medoids) and
the reliance only on the velocity signal for the clustering. Consider instead position
will generate other clusters, that emphasize more the size information.
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Fig. 14. Medoids obtained on the (Vy,Vy) trajectory for: (A) K=8 and (B) K = 30 medoids respectively. Color stands for velocity magnitude: red means high local velocity
values, and blue, low ones. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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= 30, from which six typical clusters

are shown. For each cluster, we report its number of loops, and the number of loops for each class.

W C'_l, shows the opposite trend (10 HC; 48 ES-AD) as it con-
tains mid-sized to large loops, with mostly low velocity. Here,
the subjects actually try to write faster at the onset of the as-
cending or descending phase, but quickly fail to maintain the
rhythm. This results in a loss of fluidity as manifested by the
sudden change of loop velocity or slant. This is an example
of behavioral handwriting impossible to detect from the global
or semi-global spatiotemporal parameters, but which we un-
cover automatically thanks to our representation learning on
the loop’s velocity sequences. Given the (HC; ES-AD) distribu-
tion, the HW impairments featured by this cluster seem to
appear for AD at an early-stage, although they may show-up
occasionally for a HC subject (one subject usually produces
4 x4=16 loops, and C'_l, contains only 10 HC loops, i.e. less
than one HC subject in average).

B C'_lg comprises loops with a moderate velocity in the ascend-
ing phase, that decreases in the descending phase, while fluid-
ity is maintained throughout the loop. This is a balanced clus-
ter in terms of HC (113) and ES-AD (94), and given the fluidity
shown, the ES-AD subjects here are those who maintained good
fine motor skills, contrary to those in C?_l,.

B C'_I; consists of a large number of HC and ES-AD loops, but
with a clear skewed distribution in favor of ES-AD (87 HC; 189
ES-AD). It is characterized by mid-sized to very small loops,
with low velocity, shakiness and loss of fluidity. Fluidity loss
and shakiness show up as the subjects struggle to produce such
small and slow loops, which hampers a natural HW rhythm.
This style sheds light on the correlation between micrographia
and fluidity loss, that can be developed at an early stage of AD.

This correlation between two types of HW impairment is the
kind of findings that are not possible with state of the art ap-
proaches, but which are brought to light thanks to our frame-
work combining semi-supervised clustering and sequential rep-
resentation learning. Despite these impairments, an interesting
observation, though, is that this style is shared by HC and ES-
AD. The HC subjects here might be similar to those in C?_Ag, the
cluster of aged people uncovered by our age study (Section 2),
who write very slowly. We may speculate that the HC subjects
of this cluster and those of C2_Ag exhibit a clear behavioral de-
cline induced by either of the two following reasons. The first
is that the subjects in (?_Ag and C'_I3, even if they are clini-
cally healthy, may have an aging cognitive decline that induces
similar handwriting alterations to those manifested in ES-AD’s
HW. The second is that these elders may actually already be
developing undiagnosed cognitive impairment.

Now, an explanation of MCI is in order. Fig. 15.(A) shows that
for all the clusters, the MCI class is always a significant part. This
can be explained by its larger size (87 MCI vs. 27 HC, and 27 ES-
AD), and by the fact that MCI covers a large cognitive spectrum
ranging from the mildest cognitive impairment, when M(I is diag-
nosed at an early stage, to the strongest one, just before AD is di-
agnosed. This explains also why MCI appears in clusters that com-
prise mostly people with no cognitive decline (e.g. C’_I,), but also
in clusters that comprise people with strong cognitive decline (e.g.
C'_l,), possibly associated with AD.

The results above show the power of our semi-supervised rep-
resentation learning in uncovering, even with few clusters (e.g. the
eight above), the writing styles that define the main behavioral
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Table 6
NMI for the optimal number of clusters in the 2nd stage, conditionally on the 1st stage number
of medoids.
1st stage medoids 4 5 6 7 8 9 30 50 100
2nd stage clusters 5 5 4 6 6 3 4 5 3
NMI 0.04 0.02 0.03 0.04 0.06 0.03 0.04 0.03 0.03
trends of the cognitive profiles. If we increase the number of clus- Table 7

ters (medoids), this capability increases accordingly. Fig. 15.(B) dis-
plays samples from six loop clusters when K=30 (6 chosen among
30), as they are typical also of the kind of clusters obtained at such
higher values of K. The analysis of the six clusters shows an inter-
esting evolution of the writing styles as K increases. Concretely, the
top four clusters of Fig. 15.(B) can be considered as similar to the
four clusters of Fig. 15.(A). In each set, (A) or (B), indeed, the top
cluster underlines a typical HW style of HC (barely any ES-AD), the
second from the top characterizes a typical style of ES-AD (barely
any HC) with degraded style, the third detects the ES-AD subjects
still maintaining good fine motor skills, and the 4th the HC sub-
jects with significant cognitive decline, the HW symptoms of which
are shared with ES-AD and the MCI subjects with more pronounced
cognitive impairment. Notwithstanding, if we scrutinize both sets,
it becomes clear that the ones on the right (obtained with K=30)
are much more homogeneous: the top cluster on the right, for in-
stance, includes only loops with consistently moderate velocity in
their ascending and their descending phases, while its left counter-
part comprises much more variations, reflected in the loops’ mod-
erate to high velocity appearing inconsistently on the ascending
or descending phase. This difference is maintained overall, as the
clusters on the right side have higher homogeneity in their ve-
locity profile. Besides, with K=30, new clusters emerge, like the
one at the bottom (C'_Ly), which includes very fast loops, or the
second (C!_l;g) and the fifth (C?_l;) consisting of very slow and
non-fluent loops, with different levels of shakiness. It comes as no
surprise that these three clusters are highly discriminative, as re-
flected by their cognitive profile distributions which are very sharp
(C'_lig and C'_lig contain respectively only two and one loops of
HC, while C!_I,, does not contain any ES-AD’s).

The higher homogeneity of fine motor skills observed in the
clusters, as K increases, underlines the fact that a high K value al-
lows the medoids to attract, each, only their closest loops, in terms
of the DTW distance, used in our unsupervised learning. However,
as K continues to increase, the clusters become even more homo-
geneous but with small sizes, which in turn, decreases their relia-
bility of characterizing an actual behavioral trend that is not pecu-
liar to the data at hand, but rather generalizable to unseen data.
To overcome this issue, we resort again to the Normalized Mu-
tual Information (NMI) criterion, to minimize both the number of
medoids (loop clusters) and the number of clusters at the second
(subject-based) clustering stage, as detailed next.

5.2.2. Second stage clustering

As the optimal number of clusters (groups of subjects) in the
2nd stage depends on the size of the dictionary of loop prototypes
(medoids), we perform a joint optimization of the two sizes (re-
spectively K; and K;), based on NMI, to maximize the mutual in-
formation between the 2nd stage and the cognitive profiles, while
penalizing the increase of both K; and K. Table 6 shows some val-
ues of NMI for different combinations of the two sizes. The opti-
mum is obtained for (K; =8, K, =6). Note that much higher val-
ues of K; were not selected even if they show a finer motor skill
characterization of the cognitive profiles (as shown for K; =30 in
Fig. 15.(B)). The reason is that we select the first local NMI max-
imum, instead of the global one, to minimize, as much as possi-

Distribution of the cognitive profiles over
the 2nd stage clusters CZ_D]-, based on
nine medoids (1st stage).

HC MC  ES-AD  Size
c_D, 4 15 6 25
?_D, 18 46 7 71
C?_Ds 5 26 14 45
Size 27 87 27 141

ble, the number of clusters, thus ensuring that their sizes are suf-
ficiently large to allow reliable interpretation.

5.2.2.1. Analysis of the (K; =9, Ky, =3) clustering pair. Before delv-
ing in the analysis of the optimal clustering pair (K; =8, K; =6),
we start first by analyzing the (K; =9, K; =3) combination as it
consists of the fewest number of subject clusters, which allows fo-
cusing first on the major behavioral trends on the data.

Table 7 shows the distribution of the subject’s cognitive pro-
files over the three clusters. The results are strikingly like those
obtained with our semi-global parametrization, shown in Table 3.
This confirms our findings that HW alterations do appear for AD at
an early stage, and discriminate HC from ES-AD in most cases, and
that MCI's HW is subject to two behavioral trends, one leaning to-
ward HC's and one towards ES-AD’s. The new findings, nonetheless,
are obtained only with the raw velocity signal on the loop’s writing
task, consisting usually of 16 ‘I’ instances, while those obtained by
the semi-global parametrization relied on a feature selection oper-
ating on 46 spatiotemporal parameters extracted from a rich text
of 44 words, made up of over 200 characters.

The distribution of the three clusters over the nine medoids
(Fig. 16) confirms our interpretations at the first level, as we see
that the cluster with mostly HC and MCI (C2_D,, in blue), com-
prises people mostly producing fluid loops with moderate to high
velocity, while C(2_D5 (in red), with mostly ES-AD and MCI, com-
prises mainly people producing shaky loops with lower velocity
and size. Again, a small group of subjects (C2_Dy, in yellow) ap-
pears, similar to that observed with the semi-global scheme.

Given the consistency of the two behavioral trends of MCI, we
have studied their correlation with two metadata, age and MMSE
(Mini Mental State Examination). Table 8 shows the same results
in Table 7, but enriched by the mean and standard deviation of
MMSE and age, for each cognitive profile and in each cluster. If we
focus again on the two largest clusters, C?_D, and (?_D3, we find
that the MMSE and age information sources give new insights on
our results, summarized below:

B If we compare the MMSE mean values (yellow cells), we ob-
serve that ES-AD subjects in C2_D, have a much higher MMSE
than those in C(?_D;3 (24.4vs 21.9). This confirms that higher
MMSE is correlated with maintaining fine motor skills, like
those shown in the ES-AD’s writing in cluster C'_Ig. Not surpris-
ingly, C2_D, is the only 2nd stage cluster represented by C!_Ig
(Medoid 8) (Fig. 16). Likewise, the averagely higher MMSE for
MCI subjects in (?_D, w.r.t C>_D3 (28.13vs. 26.9) may be one
of the explanations why the former lean towards a HC behav-
ior ((2_D,) while the second lean to an ES-AD’s (C2_Ds). Note



M.A. El-Yacoubi et al./Pattern Recognition 86 (2019) 112-133 127

1C__deb,
07} B o,
| o,

0.5

0.3

Yy

)/

Fig. 16. Distribution of the three optimal clusters obtained in the 2nd stage, based on nine medoids (M) in the 1st stage.

Table 8
Distribution of HC, MCI and ES-AD, based on nine medoids (1st stage), enriched by the mean and standard deviation of MMSE
and age, for each cognitive profile and in each cluster (C°_D;).

HC MC ES-AD Total Size
MMSE Age Size  MMSE Age Size  MMSE Age Size

D, 288+13 755+37 4 2826+19 794+64 15 226+50 795+62 6 25

(D, 284+15 726+6.2 18 281+17 75.7+84 46 244+25 784+69 7 71

D3 292404 73.6+58 5 269+24 820+48 26 219+34 80.0+6.7 14 45

that this difference is not maintained for HC where the MMSE
is slightly lower in C2_D,.

B A similar trend is observed for the mean age (orange cells),
which is consistently lower in C2_D, w.r.t C?2_Ds, for the three
cognitive profiles, especially for MCI where the margin is much
wider. Age advancement, therefore, may explain why MCI pa-
tients in C2_Dj5 fail to maintain their fine motor skills.

B For (?_D;, no clear trend seems to emerge. This cluster is
mainly covered by Medoid 6 (Fig. 16) that characterizes a some-
what neat writing. This cluster has a larger size than the similar
one detected with the semi-global scheme (25vs. 7), but this is
because we are not considering here the best clustering con-
figuration, but one with the lowest number of clusters in the
second stage (K; =9, K, =3); C2_Dy, as a result, attracts a rela-
tively larger number of subjects.

Overall, the MMSE and age show a correlation with the mainte-
nance of fine motor skills in ES-AD and MCI subjects. This effect,
nevertheless, is not systematic, as the standard deviation values
show that, for both MMSE and age, an overlapping is observed be-
tween their distributions in C2_D, and C?_Ds. This was expected
since, besides MMSE and age, other key factors may explain the
two major MCI behavioral trends we observe, chief among them,
the type of MCI that is diagnosed. Indeed, subjects with MCI are

usually classified into amnestic MCI or non-amnestic MCI subtypes,
based on standard neuropsychological tests. The former suffer from
clinically significant memory deficits, while the latter demonstrate
impairment in non-memory cognitive domains including language,
executive functions, or visuospatial functions. These subtypes can
be further classified into single domain or multiple domain MCIs,
based on the involvement of a single domain or multiple different
cognitive domains [74]. These MCI annotations, unfortunately, are
still not available to us, at this point of our study.

5.2.2.2. Analysis of the (K; =8, Ky =6) optimal clustering pair. If we
now select the actual optimal clustering pair (K; =8, K; =6), we
obtain, as Table 9 shows, a much higher discrimination of the cog-
nitive profiles, which are split into more homogeneous groups with
smaller sizes. This is reflected by the emergence of two clusters
with no ES-AD (C?2_D; and (?_Ds), and of a cluster with no HC
(C2_Dy).

This higher discrimination is also reflected by sharper distribu-
tions of the 2nd stage clusters over the medoids (Fig. 17), which
underlines the capture of more homogeneous writing styles (fine
motor skills). It is also reflected by sharper MMSE and age dis-
tributions over the subject clusters (Table 10), which highlights
the overall higher homogeneity of these writing styles in terms of
the two metadata as well. An in-depth analysis of each 2nd stage
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Fig. 17. Distribution of the six optimal clusters obtained in the 2nd stage, based on eight medoids (M) in the 1st stage.

Table 9

Distribution of the cognitive profiles over
the 2nd stage clusters (CZ_Dj), based on
eight medoids (1st stage).

HC MCl ES-AD  Total
¢.D, 4 10 0 14
2D, 0 16 2 18
D3 5 4 5 14
Dy 9 25 12 46
_Ds 6 9 0 15
_Dg 3 23 8 34
Total 27 87 27 141

cluster in terms of HW features (velocity, fluidity, shakiness, etc.)
can be done as before, based on Fig. 17, and a careful observa-
tion of the loops pertaining to each medoid-based cluster, but we
drop this analysis due to the amount of space required to describe
the details of six clusters (CZ_DJ-), and also because such an analy-
sis would be less reliable given the smaller sizes of the groups of
people in each cluster (C2_D sizes).

5.2.3. Comparison with the global parametrization in the loops’ task

To complete our analysis, we run another clustering of the sub-
jects based on the average velocity computed on the whole loops
task, as commonly adopted in the state of the art, instead of our
full dynamics modeling. Based on the mean (Vy,Vy) of each subject,
the NMI-based semi-supervised scheme detects seven clusters with
a NMI value of 0.03, which is much lower (half) than the best NMI
values observed for the 2nd stage clustering (Table 6). This shows
the huge improvement brought by modeling the full trajectory dy-
namics over considering mere global parameters, and by breaking
writing style modeling into two stages, the first detecting the spa-
tiotemporal writing styles at a HW unit level (here loops, but it can
be words as shown in our age study), and the second detecting the
writer’s variability over these unit-based handwriting styles.

If we now analyze the seven clusters, denoted by C_Dg, and
shown in Table 11, it becomes clear, that the clusters with higher
discrimination of HC vs. ES-AD, for instance, become smaller. This
can be explained by the poor discriminative capabilities of the av-
erage velocities, which compels the clustering algorithm to detect
smaller groups for which this average is discriminant. This comes

Table 10
MMSE and age of the cognitive profiles in each 2nd stage cluster (C{Dj) (8 medoids in the 1st stage).
HC MC ES-AD Total
Size  MMSE Age Size  MMSE Age Size  MMSE Age
Dy 4 292+10 69.0+£6.7 10 286+12 75.0+6.8 0 N/A N/A 14
D, O N/A N/A 16 282+20 756+102 2 225+0.7 77.0+9.9 18
D3 5 294406 71.0+37 4 285+17 742+45 5 248+29 788+72 14
Dy 9 288+10 77.0+41 25 27.6+£2.1 80.7+£4.6 12 223+42 780+6.8 46
G Ds 6 270+14 71.6+56 9 286+15 734+94 0 N/A N/A 15
C_Dg 3 293+06 73.6+81 23 270+24  81.7+43 8 221+35 833+40 34
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Table 11

Distribution of the cognitive profiles over
the clusters (C_Dg), based on global
parametrization.

HC MCl ES-AD  Total

CDg, 12 29 9 50
CDg 2 10 6 18
CDg 1 8 0 9
CDgz 9 20 5 34
CDgs 1 12 6 19
CDgs 2 2 0 4
CDg;, O 6 1 7
Total 27 87 27 141

with a price, though, as the small size of these clusters (clusters
C_Dg,, C_Dgs3, C_Dgs, C_Dgg and C_Dg7) makes them unreliable for
drawing meaningful conclusions; these clusters are likely to be
overfitting the data.

An additional and important shortcoming with global
parametrization of the spatiotemporal features is the much
poorer visualization and interpretability properties they offer. By
relying only on average parameters, they are unable to explain and
to show the subtle local dynamic changes differentiating different
cognitive profiles, and groups within each cognitive profile.

5.3. Classification

5.3.1. Bayesian scheme for the two-class (HC vs. ES-AD)
discrimination problem

So far, we have proposed semi-supervised learning techniques
in which the label information was used to guide the clustering al-
gorithms to select the optimal number of clusters, whether at the
feature level or the subject level. This was motivated by our goal
of automatically discovering the most relevant features for charac-
terizing ES-AD and MCI, w.r.t HC, as they are unknown a priori.
Our representation learning, however, can be harnessed in a clas-
sification setting as the 1st stage medoid-based clusters are, each,
discriminant to some degree, given their unbalanced distribution
in terms of the cognitive profiles associated with the loops they
contain. For classification, we consider only the two-class (HC vs.
ES-AD) classification setting. The reason is that MCI is overly rep-
resented, and its inclusion would entail an unbalanced data distri-
bution that is not suitable for supervised learning. Selecting a sub-
set of MCI, instead, is not viable as this health condition includes
a large diversity of types (amnestic, executive, multidomain, etc.)
that are still unavailable in our dataset, but which are important
for annotating the MCI subjects, prior to include MCI in a super-
vised classification task.

To merge the intrinsic information carried by the clusters, we
consider a Bayesian formalism for classifying a writer as AD or HC,
that aggregates probabilistically the contributions of the loop clus-
ters (medoids), by leveraging the discriminative power of each. We
use Bayes’ rule to compute, for each subject, the posterior proba-
bility to be ES-AD or HC given his/her respective data (loops). Let
us assume that the ith subject, s;, produces N; (~4 x 4=16) loops,
distributed over the clusters obtained by K-medoids, performed on
the loops’ training set. The posterior probability of class Cj (ES-AD
or HC), given data D; (loops from s;), is:

P(Di/G) x P(G)

P(Gy/D) = ==

(5)
where P(D;) = 3 _pc. gs_ap P(Di/Ci) x P(C) and P(Cy) is the a pri-
ori probability of class k (50% in our dataset). Assuming the data
D; (loops) from subject s; are class-conditionally independent, we

have:
N; '

P(Di/G) = [ [ P(M/C) (6)
j=1

where Mj. is the closest cluster (Medoid) to the jth loop of subject

s;. Thus,

P(Gi/M}) x P(M})

P(Ck)

P(Mi /) = (7)

P(Mi.) being the a priori probability of cluster M3 estimated by:

P(o) -

N Total

N,
B

(8)

here N, is the number of loops in cluster Mj'. and Ny is the total
J
number of loops (~16 loops x 54 participants). Likewise,
N
P(Ce/M) = ka (9)
B,
N,{ being the number of loops in cluster Mi. from class k (ES-AD or
HC). Each subject i is then classified by selecting the class (HC or
ES-AD) with the maximum a posteriori probability:

C* = arg max P(C,/D;) (10)
k=HC,ES—-AD

5.3.2. Experiments

For experiments, we consider the two-class dataset consisting
of 27 ES-AD and 27 HC. We use the Leave-one-person-out proce-
dure for performance evaluation. We did not use the NMI criterion
here, as this would have entailed to consider it only on the train-
ing data, which is heavy given our leave-one-out scheme involving
54 different training datasets. To get meaningful clusters w.r.t the
size of data, we have tried several numbers of clusters, by varying
K between 10 and 50, and obtained similar optimal performance
for K between 30 and 50. Here, we report the results for K= 30.

For comparison, we assess the main classification approach
used in the literature, namely Linear Discriminant Analysis (LDA).
We implement LDA as in [82,36,28], by extracting global kine-
matic features, and we carry out two experiments: in the first,
LDA takes as input the mean velocity (Vx ,V,) computed over each
writer’s loops, and in the second, a combination of global kine-
matic features computed in the same way: (Vx , Vy), mean acceler-
ation (Ay ,Ay), and mean jerk (x ,Jy). Table 12 reports the classifi-
cation rates of these three experiments on the training and valida-
tion sets. Note that we do not report confidence intervals for LDA,
since it is not subject to a random parameter initialization, but we
do so for our Bayesian approach since it relies on the clustering of
loops, obtained from an initialization of the medoids (cluster cen-
ters); we perform then 10 independent classification runs and re-
port the classification mean and its standard deviation.

As shown in Table 12, on the validation set, LDA, with (Vy ,V})
as input, obtains a classification rate of 51.9%, and of 50%, when
(Vs , V), (Ax ,Ay), and (¢ ,Jy) are combined. These rates corre-
spond essentially to chance, as a blind classifier, choosing system-
atically HC for output, gets a 50% classification rate. Incidentally,
these results confirm those in [85], obtained on a similar task
(3 x 8 loops), that report no significant difference between AD and
HC, with Anova, based on the mean stroke velocity, despite includ-
ing all AD subjects, and not only those at an early stage. This un-
derscores the poor discrimination capabilities of the global param-
eters, even when they are combined. By contrast, thanks to our
modeling of the full dynamics of (VyVy), our approach obtains, on
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Table 12
Classification rates obtained with global parameters, and with full dynamics, encoded by the temporal clusters
(Medoids).
Features Classifier Learning set  Validation Set
Global (Average) V. V) LDA 55.9% 51.9%
Global (Average) Ve .V} + (A Ay} + Ux.Jy) LDA 52% 50%

Full dynamics (Trajectory)  {Vi(n),Vy(n)}

Bayes’ Classifier = 83.2+0.7% 74+£3%

validation, a classification rate of 74.3%, which brings an improve-
ment margin of 50% over these global schemes. This is remarkable
given that we consider only velocity in comparison to the combi-
nation above of velocity, acceleration, and jerk. This shows that the
velocity full dynamics is a good parameter for discriminating ES-
AD from HC, as it considers the changes of the velocity trajectory
throughout the loop. In sharp contrast to global parametrization,
this enables the discovery of subtle changes in the writing styles,
occurring at different movement (and location) phases.

Although our approach outperforms the state of the art by a
high margin, it is in its promising phase only, as there still re-
mains a gap of 25% to perfect classification. This gap, however, can
be significantly narrowed if the data increase. Our dataset of 54
persons is still very small, compared to the ones used for hand-
writing recognition, consisting of thousands of samples, or if we
take into account the heterogeneity of each cognitive profile. We
have shown extensively in this paper, that HC and ES-AD comprise,
each, several subgroups of subjects with clearly different fine mo-
tor skills. To ensure robust classification, therefore, each subgroup
needs to be represented by a sufficient number of subjects. As an
example, in our results above, the ES-AD subjects still maintain-
ing their fine motor skills, and the HC subjects failing to maintain
theirs, are likely to be misclassified given their respective small
number. The same applies to other subgroups not sufficiently rep-
resented in the training data. It is to be expected that, by enrolling
new subjects in the study -the acquisition campaign in the Broca
hospital is continuing to this date-, the classification rates would
go up accordingly.

It is worth to stress that our Bayesian approach, coupled to
the K-medoids temporal clustering of the loops, remains fully ex-
plainable. The classifier decision can be understood in a top-down
manner by first comparing the a posteriori probabilities of the
two classes, which can be broken, each, into the product of the
class-conditional probabilities of the subject’s loops. The values of
these loop-based probabilities can, in turn, be easily understood
by checking the frequency of the loops from each class in each
medoid-based cluster. Finally, the visualization of the clusters -
Fig. 15 illustrates an example for the three-class scenario- gives
insights on the types of writing styles shared by all the cognitive
profiles, and on those specific to cognitive profile declines. Such
interpretability is of utmost importance to the medical staff. For
instance, a neurologist that understands how the automatic classi-
fication system generates its decision, based on the subject’s data,
is likely to be convinced by the usefulness of such a system, and to
be interested in integrating it as an aid-to-decision tool. Moreover,
the medical staff can also provide an informed feedback on how to
potentially improve the decision system, based on its expertise.

6. Conclusion & perspectives

We proposed in this paper a novel paradigm for studying hand-
writing changes due to cognitive decline associated with MCI and
early-stage Alzheimer, or to aging. Our work has addressed two
major limitations of the state of the art, the assumption of a
unique behavioral trend for each cognitive profile, and the encod-
ing of the HW spatiotemporal dynamics by simple global parame-
ters. First, we relax the one per-class behavioral pattern restriction

by allowing, for each, the emergence of a multimodal behavioral
pattern reflecting the diversity of behaviors within a given health
condition. We achieve this by performing unsupervised or semi-
supervised learning to uncover homogeneous groups of subjects,
and then we analyze how much information these clusters carry
about the cognitive profiles (or age groups). Second, instead of re-
lying on global (mostly average) kinematic parameters, we refine
the coarse encoding, first by a semi-global parameterization, and
then by modeling the full dynamics of each parameter. To illus-
trate the power of our paradigm, we presented three studies, one
regarding age, and two regarding Alzheimer’s disease.

Regarding our age study, unlike previous works reporting only
one pattern of HW change with aging, our first study, based on a
semiglobal feature parametrization scheme unveils, in an unsuper-
vised way, three major aging HW styles, one specific to aged peo-
ple and two shared with other age groups. In our second study,
through a semi-supervised learning based on the same semiglobal
parametrization, a striking finding is revealed: two major clusters
are uncovered, one dominated by HC and MCI subjects, and one
dominated by MCI and ES-AD, thus highlighting that MCI patients
have fine motor skills leaning towards either HC's or ES-AD’s.

In the third approach, our novel modeling of the full dynam-
ics of HW units allowed to harness the rich temporal information
inherently characterizing online HW . For each raw kinematic pa-
rameter, our approach can learn feature representations [6] instead
of considering handcrafted global or semi-global features, assumed
implicitly to be discriminant. Our scheme allows a representation
learning from sequences, which is barely addressed in the state of
the art, as it is suitable for sequential data from which temporal
feature representations are to be uncovered. As a comparison, cur-
rent sequential deep learning models [25,31], including end-to-end
versions like CNN/MLP—LSTM [83,30], leave the task of static fea-
ture learning to CNN or MLP, LSTM (RNN) taking charge of the se-
quential modeling. Such an approach would not be applied in our
case, as it is fully supervised, and second because temporal, not
static, features are to be uncovered from the sequences themselves.

Applied to loops represented by their velocity time series, our
temporal representation learning uncovers a rich set of features si-
multaneously as a byproduct of the unsupervised learning itself,
by automatically extracting several loop prototypes, each consist-
ing of a different combination of features like the full velocity pro-
file, size, slant, fluidity, and shakiness. By considering a two-stage
clustering based on the distribution of each user’s input over the
loop prototypes, we uncover again two major clusters, one lean-
ing towards HC and one to ES-AD, with MCI subjects distributed
over the two clusters in comparable proportions. We have shown
that this bimodal behavioral trend of MCI is coherent with age and
MMSE metadata, found to be higher and lower respectively in the
second cluster, which strongly suggests that the MCI subjects gath-
ered with ES-AD’s are likely to be more cognitively impaired than
those with HCs. Although this finding has also been unveiled by
our second study as well, it was discovered here based only the
velocity trajectory, instead of the large set of spatiotemporal fea-
tures considered in the semi-global parametrization scheme. We
also have shown that our sequential representation learning can be
harnessed for classification through a Bayesian formalism aggregat-
ing probabilistically the contributions of the loop prototypes; this
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approach outperforms with a large margin state of the art meth-
ods based on discriminant classifiers, taking as input a set of global
features.

A key advantage of our temporal representation learning is that
it is fully explainable. It does not only automatically extract new
HW features for characterizing ES-AD, that can be visualized and
easily understood, but it also detects clusters and obtains classi-
fication results that are naturally explainable to the medical staff.
This is a highly desirable property for health professionals, as they
can better exploit and integrate such a system with other aid-to-
decision tools.

In terms of perspectives, our work opens the door for several
future directions, whether short term or mid to long term. At the
short term, we have considered, in our modeling of the spatiotem-
poral full dynamics, only velocity trajectory. A straightforward im-
provement is to consider this modeling also for the other spa-
tiotemporal parameters like, acceleration, jerk, pressure, etc., and
to fuse the results from these streams. In the same spirit, the fu-
sion can take place at the task level. Combining the input the
writer produces for different tasks (loops, text to copy, free text,
and drawings) will uncover potential writing impairments under
different contexts, thus increasing discrimination between ES-AD,
MCI and HC subjects.

On another side, although our results are already promising,
and are expected to improve based on the two fusion levels men-
tioned above, we should assess additional metadata that were not
considered as non-inclusion factors, such as the subject’s education
level and frequency of handwriting in daily life. Our dataset can
be seen as a snapshot at a particular time for each person, and al-
though our assumption is that these factors are expected to be sta-
tistically similar for the three cognitive profiles, they may actually
induce bias in our study. To circumvent this problem, two strate-
gies can be conjointly adopted. The first is to increase significantly
the size of the dataset to ensure that each cognitive profile covers
sufficiently all the factors such as the two above. Acquiring a large
dataset in our health context, however, is extremely difficult, as
explained in the introduction, and requires a large timeline dura-
tion. The second strategy is to consider a longitudinal study where
the different methods proposed in this paper can be assessed for
the subjects at two different sessions, separated by a time period
between 12 to 24 months, for instance. Such a study will focus
on the changes of the writing style of each subject irrespective of
his/her education level, frequency of handwriting, and other meta-
data of this kind. In doing so, the longitudinal study will implicitly
remove the possible bias introduced by these factors. Moreover, it
may help assessing the predicting power of our approach by inves-
tigating HC subjects that may convert into MCI or ES-AD, or MCI
patients that become ES-AD.

As our approach is generic and fully data-driven, it can be ap-
plied for characterizing other pathologies. This is because it au-
tomatically uncovers the features associated with different health
conditions by an automatic learning of online handwriting data.
The clusters resulting from such learning implicitly encode sev-
eral spatiotemporal features like velocity, jerk, shape, and above
all, subtle irregularities possibly associated with pathologies, like
Parkinson’s or Huntington’s, as long as the data are acquired
from patients with these pathologies and from healthy controls.
Finally, the genericity of our approach makes it also applica-
ble in a straightforward manner to non-Latin languages as well
[19,29,37,50,51,67,86].
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