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a b s t r a c t 

We present, in this paper, a novel paradigm for assessing Alzheimer ’s disease and aging by analyzing im- 

pairment of handwriting ( HW ) on tablets, a challenging problem that is still in its infancy. The state of 

the art is dominated by methods that assume a unique behavioral trend for each cognitive profile or age 

group, and that extract global kinematic parameters, assessed by standard statistical tests or classification 

models, for discriminating the neuropathological disorders ( Alzheimer ’s ( AD ), Mild Cognitive Impairment 

( MCI )) from Healthy Controls ( HC ), or HC age groups from each other. Our work tackles these two major 

limitations as follows. First, instead of considering a unique behavioral pattern for each cognitive profile 

or age group, we relax this heavy constraint by allowing the emergence of multimodal behavioral pat- 

terns. We achieve this by performing semi or unsupervised learning to uncover homogeneous clusters of 

subjects, and then we analyze how much information these clusters carry on the cognitive profiles (or 

age groups). Second, instead of relying on global kinematic parameters, mostly consisting of their aver- 

age, we refine the encoding either by a semi-global parameterization, or by modeling the full dynamics of 

each parameter, harnessing thereby the rich temporal information inherently characterizing online HW . 

To illustrate the power of our paradigm, we present three studies, one regarding age, and two regard- 

ing Alzheimer ’s. Thanks to our modeling, we obtain new findings that are the first of their kind on this 

research field. On aging, unlike previous works reporting only one pattern of HW change with age, our 

study, based on a semiglobal parametrization scheme, uncovers three major aging HW styles, one specific 

to aged subjects and two shared with other age groups. On Alzheimer ’s, a striking finding is revealed: 

two major clusters are unveiled, one dominated by HC and MCI subjects, and one by MCI and ES-AD , 

thus revealing that MCI patients have fine motor skills leaning towards either HC ’s or ES-AD ’s. Our paper 

introduces also a new temporal representation learning from HW trajectories that uncovers a rich set of 

features simultaneously like the full velocity profile, size and slant, fluidity, and shakiness, and reveals, in 

a naturally explainable way, how these HW features conjointly characterize, with fine and subtle details, 

the cognitive profiles. 

© 2018 Published by Elsevier Ltd. 
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1. Introduction 

1.1. Context and motivation 

Alzheimer ’s disease ( AD ), the most common cause of major neu-

rocognitive disorder (or dementia), is a progressive neurodegener-
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tive disease, characterized by cognitive dysfunction, particularly

emory impairment and other cognitive skills, that affect a per-

on’s ability to perform everyday activities [4,10] . Given the insid-

ous progression of AD , the first troubles are often misinterpreted

s due to normal aging. AD ’s diagnosis criteria are mainly based

n clinical markers (i.e. a significant cognitive decline affecting in-

ividual’s independency), and biological markers. Due to the insid-

ous and slow progress of the disease, research attention has re-

ently focused on Mild Cognitive Impairment ( MCI ), a health stage

ssociated with lower performance in one or more cognitive do-

ains, that does not affect, however, a person’s independence in

arrying out functional activities. About 15–20% of people over 65
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ave MCI , among which those with memory-related MCI are more

ikely to develop AD [1,74,46,60] . 

As persons with AD are significantly impacted by episodic

emory impairment, loads of studies have been dedicated to lan-

uage disorders involving spelling, grammatical, syntactic or se-

antic errors, etc. [5,42,53,58,68,73] . A recent review shows, how-

ver, that AD can be predicted by noncognitive symptoms, in

articular by motor impairment occurring during the preclini-

al phase and before clinical diagnosis [10] . Several studies have

ssessed gait impairment, mild parkinsonian signs, fatigue and

railty [8,9,33,41] , and some works have investigated fine mo-

or impairment, especially handwriting ( HW ) changes due to AD

16,27,28,32,36,66,71,82,84,85] . Indeed, AD induces cognitive and

isuospatial impairment that makes the physical act of writing dif-

cult, which may trigger HW impairment [24] . The aim of our

tudy is to characterize handwriting ( HW ), acquired online from

ablets, in subjects belonging to three cognitive profiles: early-

tage Alzheimer Disease ( ES-AD ), Mild Cognitive Impairment ( MCI )

nd Healthy Controls ( HC ), i.e. subjects with a neurotypical cogni-

ive profile, and also to investigate how HW changes with aging. 

.2. State of the art 

HW recognition [57] is a mature technology with several highly

uccessful commercial applications, whether offline for postal mail

orting and bank check processing [21,22,49] , or online for rec-

gnizing personal notes on smartphones, tablets and PDA devices

54,48] . HW analysis for health assessment [17,56] has been far less

tudied owing to the difficulty and the cost of acquiring data from

atients and the limited datasets obtained as a result, the difficulty

f obtaining reliable annotations, and, above all, the unclear under-

tanding of whether HW changes may be symptomatic of cognitive

ecline and the onset of a neurodegenerative disease. 

Several studies have investigated the link between HW changes

nd pathologies like Parkinson [40,47,76,71,81,77] , Huntington [52] ,

chizophrenia [11] , Sclerosis [65] , or other health conditions such

s Depression [66] or Emotions [39] . Other works tried to

hed light on the link between HW deterioration and aging

13,23,35,45,62,70,81] . Such a link is not only fundamental for un-

erstanding how fine motor skills evolve with age, but it may be

ey for distinguishing natural from pathological HW changes. 

Research on Alzheimer ’s assessment by HW analysis is still in

ts infancy. The state of the art is dominated by methods that

xtract global kinematic parameters, e.g. their averages, and then

onsider one of the two following schemes: 1) apply standard tests

e.g. Anova ) to assess the statistical significance of each parameter

or discriminating AD and MCI from each other, and w.r.t healthy

ontrols ( HC ), or, albeit much less frequently, 2) apply classifica-

ion techniques to identify a user’s cognitive profile. The studies

n the first scheme support the tendency of lower velocity, fluid-

ty, and pressure, as well as larger movement duration and number

f strokes, observed as the health profile declines from HC to MCI

nd later on to AD [82,84,66,71,36] . In the second scheme, the ap-

roaches proposed recently [82,36,28] essentially gather the global

arameters above and provide them as input to simple classifiers.

lthough they report promising classification rates on some HW

asks, these studies are prone to overfitting, as combining HW pa-

ameters may lead to a curse of dimensionality given the limited

raining data. Interestingly, the studies on age-related HW changes

re similar to those in scheme 1. Based on the same global kine-

atic parameters, they show the general trend that, as age in-

reases, velocity, fluidity and pressure decrease, while in-air time

nd pen lifts increase [35,45,62,81,23] . 

Overall, although statistical tests and classification schemes ob-

ain some promising results, showing the potential of HW in dis-

riminating AD, MCI and HC (or age groups) from each other, they
uffer from serious limitations. First, they consider, in most cases,

nly the average values of the kinematic parameters, thus over-

ooking HW dynamics and its potential in detecting subtle changes

bout the health condition. Such an averaging actually corresponds

o a handcrafted feature extraction that converts raw HW input

nto manually-designed features, based on human a priori knowl-

dge. This is a clear shortcoming as it implicitly assumes that the

andcrafted features are the best way to discriminate the cognitive

rofiles (or age groups) from each other. Second, these studies as-

ume that each cognitive profile (or age group) is associated with

ne HW pattern that distinguishes it from the others. Such an as-

umption is limiting and restrictive as it discards, from the outset,

he diversity of HW patterns that may characterize a single health

ondition (for instance, all HC subjects may not have a fast HW ,

hile all AD subjects may not write slowly). 

.3. Proposed work 

This paper presents a novel paradigm of studying HW changes

ith aging or different cognitive profiles, that addresses the limits

bove. First, instead of assuming a unique (unimodal) behavior for

ach cognitive profile or age group, we relax this heavy constraint

y allowing, for each, the emergence of a multimodal behavioral

attern. We achieve this by a semi or unsupervised learning to un-

over homogeneous groups of subjects, and then we analyze the

nformation these clusters carry on the cognitive profiles (or age

roups). Second, instead of relying on average kinematic parame-

ers, we refine the encoding either by a semi-global parameteriza-

ion, or by modeling the full dynamics of each parameter, harness-

ng thereby the rich temporal information inherently characteriz-

ng online HW . The power of our paradigm is illustrated by three

tudies, one on age, and two on Alzheimer ’s. 

The first study aims to infer different writing styles and their

orrelation with age, with an emphasis on people over 65 years.

ased on a set of words produced by each writer, it first consid-

rs a semi-global feature parameterization by encoding the distri-

ution of each spatiotemporal parameter over a fixed number of

ins characterizing coarsely its dynamics. Since writing styles are

nknown a priori , we resort to unsupervised learning to uncover

hem in an automatic way. In this respect, we propose a novel

tyle categorization model, carried out at two levels, word -level

low level) and writer -level (high level). At the first, a clustering

f words based on their spatiotemporal representation detects the

ajor writer-independent word styles ( clusters ). At the second, each

riter’s set of words is converted into a Bag of Prototypes ( BoP ),

ssociated with the writing styles detected in the 1st stage. This

oP is augmented by a descriptor of the writer’s variability across

ords to generate the input to a second clustering algorithm that

nfers writer styles or categories . The analysis of the age group dis-

ribution over each cluster identifies then the major writing styles

hat characterize aging. Unlike previous works reporting only one

attern of HW change with age, our study unveils three major ag-

ng HW styles, one specific to aged people and two shared with

ther age groups. 

Our second study seeks to characterize HW alterations associ-

ted with ES-AD and MCI w.r.t HC . Based on a semi-global feature

ncoding in a text copying task, it seeks to uncover homogeneous

ubject groups (clusters), and then analyzes the extent to which

hese groups are correlated with the cognitive profiles. To enhance

he clusters’ quality, a semi-supervised learning is proposed where

 Normalized Mutual Information feature selection scheme guides

 hierarchical clustering algorithm to find the best trade-off be-

ween the number of clusters and the discriminative power of each

.r.t the three cognitive profiles. Thanks to this method, a striking

nding is revealed: two major clusters are uncovered, one dom-

nated by HC and MCI subjects, and one dominated by MCI and
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ES-AD , thus revealing that MCI patients have fine motor skills ei-

ther close to HC ’s or to ES-AD ’s. 

In the third study, we take a leap further by modeling the full

dynamics of HW basic units. The key our approach builds on is

to harness the online HW time ordering to automatically learn,

for each raw kinematic parameter, feature representations [6] in-

stead of considering handcrafted global or semi-global features, as-

sumed implicitly to be discriminant. On a task of writing cursive

l loops, we propose a temporal clustering of the loops considered

as time series, by a K-medoids algorithm taking as similarity mea-

sure DTW ( Dynamic Time Warping ) that accommodates the sequen-

tial aspect of the data. Our scheme allows a representation learn-

ing from sequences, which is barely addressed in the state of the

art [6] . Applied to loop’s velocity time series, our scheme uncov-

ers a rich set of features simultaneously as a byproduct of the

unsupervised learning itself. Indeed, the latter extracts (learns)

several loop medoids (clusters), each consisting of a different com-

bination of features like the full velocity profile, loop size and slant,

fluidity, etc . We show that this representation learning can be ex-

ploited in several ways. First, by considering a second stage clus-

tering based on the distribution of each user’s input over the loop

medoids or prototypes (first stage clusters), we uncover new ho-

mogeneous groups and study their link with the cognitive profiles.

Second, to show the intrinsic information carried by the 1st stage,

we consider, in a binary HC vs. ES-AD classification task, a Bayesian

formalism that aggregates probabilistically the contributions of the

loop prototypes by leveraging the discriminative power of each.

Third, this temporal representation learning offers the advantage of

being explainable. It does not only automatically extract new HW

features for characterizing ES-AD , that can be visualized and easily

understood, but it also detects clusters and obtains classification

results that are naturally explainable to the medical staff and to

the layman in general. This is important as a neurologist, for in-

stance, rather than being convinced by mere classification rates, is

keen in understanding how the automatic system generates its de-

cision based on the subject’s data. 

The rest of the paper is as follows. In Section 2 , we present our

approach on characterizing age-related HW changes. Section 3 in-

troduces our work on HW changes for subjects with ES-AD and

MCI w.r.t HC , composed of two approaches, based on HW semi-

global parametrization and full dynamics modeling respectively.

The details of these two approaches are given in Sections 4 and

5 . Section 6 concludes the paper and sketches some future direc-

tions of our work. 

2. Uncovering writing style changes with aging 

Age characterization from HW is fundamental as it may allow

distinguishing normal HW change due to aging from abnormal one,

potentially related to a pathological cognitive decline. In this sec-

tion, we address the problem of age characterization from online

HW. The goal is to detect HW styles and study their correlation

with age, by the analysis of spatiotemporal HW parameters. 

2.1. State of the art on aging assessment by HW analysis 

Several works have studied HW changes as people age. Some

were carried out through visual inspection [81,35,72,78] . Automatic

studies concerned mostly online HW [23,62,55,70,12] , although few

have addressed the offline case [2,1,7] . Because they rely on a rich

set of temporal features and not solely on static ones, the for-

mer have a much larger potential for uncovering parameters that

change with age. This potential is reflected in the state of the art

where, based on standard statistical tests or linear regression, sev-

eral spatiotemporal parameters have been shown to change with
ging, such as increasing in-air time and number of pen lifts [62] ,

ower writing velocity, pressure and smoothness [23,35,45] . 

Although they do show the link between aging and HW

hanges, these studies suffer from two limitations. First, they con-

ider global kinematic parameters from the whole writer’s text,

hus assuming that they are sufficient to assess different writings.

n doing so, they overlook another useful information: does a per-

on write different words in a similar way, or does s/he show

ifferent spatiotem poral trends from one word to another? this

uestion has not been addressed before. Second, state of the art

ethods assume that HW evolves with age according to a unique

attern. This rules out the possibility of different evolution pat-

erns, or that for some elders, HW may not change in any signif-

cant way. Different HW aging patterns, however, is a sound as-

umption as they could reflect different biological aging patterns

ithin chronological aging [38] . 

.2. Proposed approach for age assessment based on online HW 

nalysis 

To tackle these limitations, we have proposed an approach

44] that relaxes the two assumptions above. First, instead of con-

idering average HW parameters, we propose a semi-global pa-

ameterization scheme that encodes the distribution of each spa-

iotemporal parameter over a fixed number of bins, characterizing

oarsely its dynamics. Second, we propose a two-stage clustering

cheme that models the writing style in terms of both the spa-

iotemporal style and its maintenance/variability across different

ords, and that makes possible the emergence of several trends

ithin a same age group. Next, we describe the feature extraction

hase, the two-stage clustering scheme, the experiments and the

esults obtained. 

.2.1. Word-based feature extraction 

Online HW words are comprehensively represented by three

emporal functions ( x ( t ), y ( t ), p ( t )) encoding the pen trajectory

nd pressure [26] . For each word, we extract two feature types,

ynamic and static. For the first, we extract, for each point

 , the horizontal and vertical velocities, Vx ( n ) = | �x ( n )/ �t ( n )|

nd Vy ( n ) = | �y ( n )/ �t ( n )|, where �x ( n ) = x ( n + 1) − x ( n -1),

y ( n ) = y ( n + 1) − y ( n -1) and �t ( n ) = t ( n + 1) − t ( n -1). Vx ( n ) and

y ( n ) are then quantized each into a four-bin histogram to encode

oarsely their dynamics. We similarly compute local acceleration

nd jerk (derivative of acceleration). By adding pen pressure,

ts variation, and in-air time duration ratio (in-air duration/total

uration) [62] , we obtain 33 dynamic features. For spatial features,

e first remove the velocity effect by resampling HW trajectories

o make constant the distance between consecutive points. Local

irection and curvature angles are then extracted and quantized

ach into a histogram of eight bins in the 0 °−180 ° range. We also

onsider the number of pen-ups, the average horizontal in-air

ength, the number of strokes (segments between two local min-

ma of velocity) and their average length, as well as the average

ength of the stroke projection on the X axis, and on the Y axis.

his results in 21 spatial features, which combined to dynamic

eatures, yield a feature vector of dimension 54. 

.2.2. Two-stage semi-supervised learning 

As HW styles are unknown a priori , they are usually inferred

y unsupervised learning techniques [80,64,14] , that cluster HW

nput into groups, identified as styles. These styles are often in-

erred at the character, stroke and word levels [14,18] . We believe,

owever, that writer style inference should rely not only on this

aw signal information but also on high-level information asso-

iated with the writer’s variability across words. This motivated

s to propose a two-stage unsupervised approach: the 1st stage
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Fig. 1. SNE projections of 1st stage clusters with color encoding (A) cluster labels, and (B) age distribution; (C) HW samples in each cluster; the color scale here quantifies 

the magnitude of Velocity (left column) and Jerk (right). 
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c  
akes as input the low-level spatiotemporal word representation

encoded by 54 features), and performs a clustering of the set of

ords regardless of writer identity, generating clusters correspond-

ng to text-independent and writer - independent word styles. At the

nd stage, features are computed at the writer level. Each writer’s

et of words is converted into a Bag of Prototype Words (BPW)

69] by assigning each word to its closest 1st stage cluster. This

enerates a histogram of the writer’s word distribution over the

st stage clusters, that is augmented by the writer pairwise word

istance distribution, quantized over five bins. This two-level rep-

esentation is input to a second clustering, to uncover writer -style

ategories by modeling both the spatiotemporal word style, and its

ariability across the writer’s words. The detected clusters are then

nalyzed in terms of their correlation with age. 

Our two-stage scheme can be seen as a clustering-based deep

ierarchical feature representation scheme [15] , in which the 1st

tage learns word writing styles inferred from spatiotemporal infor-

ation, and the 2nd stage detects the actual writer style by learn-

ng its words’ variability across the 1st stage word styles. Different

rom [15] , nonetheless, our hierarchical learning is performed over

wo entities, a word in the 1st stage and a writer’s set of words in

he 2nd stage. 

We present the results using K-means clustering on both stages

similar results are obtained with other algorithms such as GMM

r Hierarchical clustering), where the number of clusters is auto-

atically determined by the Silhouette criterion. Hereafter, the 1st

nd 2nd stage clusters will be referred to as clusters ( C 1 _w k ,) and

ategories ( C 2 _A j ), respectively. C 1 _w k designates the k th cluster of

ords, obtained at the 1st stage, while C 2 _A j refers to the age-

elated 2nd stage j th cluster of subjects. 

.3. Experiments 

.3.1. Dataset 

For evaluation, we use the Ironoff dataset [79] of online HW

ord samples, acquired by a Wacom tablet at a sampling rate of

00 Hz and a resolution of 300 dpi. Although this set comprises

80 writers, only few are over 60 years. For a more reliable study,

e collected, at Broca Hospital in Paris, HW samples from 25 el-

ers with no diagnosed pathology, with an average age of 72.
he data were acquired on a Wacom Tablet at the same sampling

ate but with a higher resolution (5080 dpi), that we decreased

o match the 300 dpi of Ironoff. Combining both sets, we obtain

7,683 HW words from 905 writers aged from 11 to 86 years old

 y.o. ), among which 772 are between 18 and 50. For the 1st stage

nsupervised learning, we use the whole set since the clustering is

ord-based. For the 2nd stage, we consider the following six Age

roups ( AG ), in a similar way to the state of the art [23] : AG 11–17 

11–17 y.o. ), AG 18–35 (18–35 y.o. ), AG 36–50 (36–50 y.o. ), AG 51–65 (51–

5 y.o. ), AG 66–75 (66–75 y.o. ), and AG 76–86 (76–86 y.o. ). To properly

valuate the clustering and its correlation with age, we select, from

he whole set, a balanced subset in terms of age groups by retain-

ng 26 writers for each, thus generating a total of 156 writers. 

.3.2. First stage clustering for unsupervised characterization of 

ge-related HW patterns 

Based on the Silhouette method, the 1st stage uncovers an op-

imal number of nine clusters. To visualize the clustering quality,

e use Stochastic Neighbor Embedding ( SNE ) [34] , a nonlinear di-

ensionality reduction technique that optimally maps the points

rom a high dimensional space onto a lower space by preserving

airwise distances as much as possible. The left of Fig. 1 shows

he words projected by SNE from the 54-feature dimensional space

nto two dimensions; color in Fig. 1. (A) encodes age (from dark

lue (youngest) to yellow (eldest)) while it encodes cluster labels

n Fig. 1. (B). By Overlaying (A) over (B), remarkable findings are

rought to light: we clearly observe a correlation between age and

W , as reflected by some groups of aged people emerging auto-

atically from our 1st stage clustering. In particular, cluster C 1 _w 2 

tands out as it is mostly associated with aged people. We also

ote that clusters C 1 _w 3 , C 
1 _w 6 and C 1 _w 9 are partially associated

ith aged writers. 

Fig. 1. (C) shows word samples in each cluster, encoded by the

elocity and jerk magnitudes. These words highlight the main HW

atterns that emerge from HW data, summarized in Table 1 . 

If we focus on clusters C 1 _w 2 , C 
1 _w 3 , C 

1 _w 6 and C 1 _w 9 , i.e. the

nes significantly represented by the oldest age groups, AG 66–75 

26 people) and AG 76–86 (26 people), two main aging tendencies

tand out: C 1 _w 2 and C 1 _w 6 represent small-size HW , with a verti-

al script style, low velocity and jerk, and medium pressure, while
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Table 1 

Main characteristics of 1st stage clusters ( C 1 _w k ). V x and V y stand for horizontal and vertical velocity, 

and V for its magnitude. The same applies for Acceleration and Jerk. 

Dynamics Slant Pressure Curvature Pen-up frequency 

C 1 _w 1 Low V, A , and J Upright Medium Round Strokes Medium 

C 1 _w 2 Very low V, A , and J Upright Low Round Strokes High 

C 1 _w 3 High V, A , and J Right Slant Medium Straight Strokes High 

C 1 _w 4 Moderate V, A , and J Right Slant High Straight Strokes Medium 

C 1 _w 5 Moderate V, A , and J Upright Medium Medium High 

C 1 _w 6 Moderate V y , low V x Upright Medium Medium Medium 

C 1 _w 7 Moderate V, A , and J Upright Medium Round Strokes Medium 

C 1 _w 8 High V y , moderate V x Upright Medium Upright Strokes High 

C 1 _w 9 Very high V, A , and J Right Slant Medium Upright Strokes Medium 

Fig. 2. SNE projections of the subjects from the 14-dimensional space onto two dimensions, labeled by color according to (A) 2nd stage categories ( C 2 _A 1 to C 2 _A 8 ), and (B) 

Age, from youngest (blue) to oldest (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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C 1 _w 3 and C 1 _w 9 represent a right slanted cursive style, with very

fast dynamics and medium to low pressure, C 1 _w 3 characterizing,

in addition, large size HW . 

2.3.3. Second stage clustering for unsupervised characterization of 

age-related HW patterns 

At the 2nd stage, each writer is described by 14 features, nine

encoding his/her word distribution over the 1st stage clusters, and

five encoding the distribution of his/her word pairwise distances.

Our clustering of writers detects eight clusters or categories based

on the silhouette criterion. Fig. 2 shows the SNE projections of the

eight categories on the set of writers, where each writer is en-

coded by age color in Fig. 2. A, and by label color in Fig. 2. B. Again,

we observe a striking relationship between the categories and age

groups, with particularly category C 2 _A 6 standing out, as it is com-

prised mostly of aged subjects. 

To emphasize the link between HW changes and aging, we an-

alyze for each category, the sizes of the oldest age groups, i.e.

AG 66-75 and AG 76-86 , w.r.t the other age groups. Table 2 reports the

size and percentage of AG 66–75 and AG 76–86 within each (2nd stage)

category, and Fig. 3 shows the age distribution for each category
.r.t to the initial balanced age distribution (1/6 for each group).

or instance, age group AG 51–65 ’s percentage in C 2 _A 1 is two, as it

s twice more represented in C 2 _A 1 than it was before clustering. 

Fig. 3 reveals an important fact: four categories ( C 2 _A 2 , C 2 _A 3 ,

 

2 _A 5 and C 2 _A 7 ) do not comprise any writer from AG 66-75 or

G 76-86 , and only three categories ( C 2 _A 1 , C 2 _A 4 , and C 2 _A 6 ) con-

ain a significant number of aged writers. The distribution of the

st stage clusters within each 2nd stage category is depicted in

ig. 4 , while Fig. 5 reflects this distribution in a visual way, through

epresentative word samples. The major findings follow below. 

� C 2 _A 6 clearly stands out: it includes virtually only subjects

over 65, as the { AG 66- 75 + AG 76-86 } set represents 84% of the

subjects ( Table 2 ). As shown in Figs. 4 and 5 , C 2 _A 6 ’s sub-

jects write words mostly captured by C 1 _w 2 , characterized by

lowest velocity, acceleration and jerk, as well as round HW

with the highest number of strokes and smallest stroke length

( Fig. 1. (C) and Table 1 ). As C 2 _A 6 contains the highest num-

ber of persons (44 writers among 156, i.e. 28%), and 71% of

the { AG 66–75 + AG 76–86 } subjects, this could reflect a major ag-

ing trend, characterized by slow and curved HW , with medium

to high in-air time, probably induced by writing hesitations due
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Table 2 

Size and percentage of AG 66–75 and AG 76–86 within each (2nd stage) category. 

C 2 _A 1 C 2 _A 2 C 2 _A 3 C 2 _A 4 C 2 _A 5 C 2 _A 6 C 2 _A 7 C 2 _A 8 

Size 18 16 10 29 10 44 16 13 

AG 66–75 11% 0% 0% 21% 0% 39% 0% 6% 

AG 76–86 22% 0% 0% 7% 0% 45% 0% 0% 

Fig. 3. Age group distribution in each category of the 2nd stage. 

Fig. 4. Distribution of the 1st stage clusters within each 2nd stage category. 

Fig. 5. HW Samples from each category of the 2nd stage, showing velocity on a 

color scale. 
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to mild cognitive decline. These tendencies are a hallmark of a

slower and less fluid HW. C 2 _A 6 is also characterized by words

written with small size, as shown by Fig. 5 visually, and by

Fig. 4 that indicates a high value for C 1 _w 2 in the C 2 _A 6 cat-

egory. C 1 _w 2 , precisely, corresponds to small size ( Fig. 1. (C) and

Section 2.3.2 ). 

� C 2 _A 1 represents 11.5% of the oldest age groups, AG 66-75 and

AG 76-86 , and consists of a HW style closer to that of AG 36-50 ,

in terms of dynamic features. The subjects in this group have
the highest velocity, acceleration and jerk, which is the oppo-

site behavior to C 2 _A 6 ’s. C 2 _A 1 is also characterized by words

with large size as shown by Fig. 5 visually, and by Fig. 4 that

indicates a high value for C 1 _w 3 in the C 2 _A 1 category. C 1 _w 3 ,

precisely, corresponds to large size ( Fig. 1. (C) and Section 2.3.2 ).

� C 2 _A 4 represents 15.4% of AG 66-75 and AG 76-86 , and is character-

ized by a HW with medium velocity, very low horizontal jerk,

medium pressure, and low pressure variation. 

In summary, unlike previous works reporting a unique HW pat-

ern change with aging, our study unveils three major aging HW

tyles, one specific to aged people and characterized by slower and

ess fluid HW, and two, shared with the other age groups, charac-

erized mostly by high dynamics and variability. In the future, it

ight be interesting to link our findings with the works seeking

o study how chronological aging features different biological ag-

ng patterns, healthier and unhealthier [38] . 

. Uncovering writing style alterations with Alzheimer ’s and 

CI 

.1. State of the art on Alzheimer’s assessment by HW analysis 

Over the last decades, loads of research studies have investi-

ated the link between HW changes and pathologies like Parkinson

76] , Huntington [52,71] , Schizophrenia [11] , Sclerosis [65] , or other

ealth conditions such as Depression [66] or Emotions [39] . In par-

icular, Parkinson disease ( PD ) has intensively been studied through

he analysis of fine movements, acquired on a digitizer. The tar-

et tasks for these studies required particular finger and wrist

oordination, like the Archimedes spiral, concentric circles, and
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handwriting input [75,59] . In addition to Micrographia (small size

writing or drawing), several spatiotemporal parameters as move-

ment duration, velocity, and fluency were reported to be effective

in discriminating PD patients from HC [77] . 

Although several studies have been proposed for AD ’s assess-

ment by online HW analysis since the late 1990s, this research

field is still in its infancy. Characterizing Alzheimer ’s at an early

stage is a challenge, since the onset of the disease is insidious.

As there is high heterogeneity of Alzheimer ’s profiles, and as some

MCI patients can convert into Alzheimer ’s, characterizing AD re-

quires studying the MCI class, and thus developing techniques for

discriminating between three classes ( AD vs. MCI vs. HC ), which

brings additional complexity w.r.t Parkinson ’s (only two classes). 

State of the art methods on Alzheimer ’s assessment by HW

analysis essentially extract global ( average ) kinematic parameters,

and then consider one of the two following schemes: 1) apply

standard tests (e.g. Anova ) to assess the statistical significance of

each parameter for discriminating a pathological population from

a healthy control one, or, albeit less frequently, 2) apply classifica-

tion techniques to identify a subject’s cognitive profile based on a

multidimensional description of his/her HW . 

The studies in the first scheme depend on factors such as the

HW task (copying a text, sentence, loop series, etc .), and the num-

ber of cognitive profiles under study (e.g. { HC vs. MCI vs. AD } or

{ HC vs. AD }), but they tend to assert overall that lower velocity, flu-

idity, and pressure, as well as larger movement duration and num-

ber of strokes, are observed as the health profile declines from HC

to MCI and later on to AD [82,84,66,71,36] . These findings, however,

are sometimes disconfirmed or even contradicted [82,85] . This may

be explained by the strong implicit assumption in these studies

that each cognitive profile features a unique behavioral pattern,

which is not realistic, as our study on age in Section 2 has shown

for HC . Indeed, a discriminant parameter in one study may turn

out not discriminant in another if the fine motor skills of MCI sub-

jects in the former are statistically more impaired. Such a discrep-

ancy is likely given the small datasets usually considered. Worse,

considering early-stage AD only as opposed to an AD all-inclusive

study may heavily impact the results, as it is much easier to detect

high significant HW impairments in subjects with advanced AD . 

In the second scheme, the few approaches proposed recently

[82,36,28] essentially gather the global kinematic parameters

above and provide them as input to a Linear Discriminant Analy-

sis ( LDA ) or a logistic regression classifier [63] . Although they report

promising classification rates on some HW tasks, these studies suf-

fer from overfitting as the number of HW parameters quickly leads

to a curse of dimensionality, given the limited training data. Some

reported results are misleading as they are obtained on the very

data the classifiers are trained on [28,82] . 

3.2. Proposed work on Alzheimer’s assessment by HW analysis 

Assessing HW disorders associated with pathologies like

Alzheimer’s amounts to detecting pathological HW deteriorations

w.r.t writing style changes due to normal aging. The main issue, in

this regard, is that there is no agreed-upon definition of deteriora-

tions or changes. Fig. 6 shows same HW samples from six people

that underline this issue. 

Whether one looks to static or velocity (encoded by color) in-

formation, it is hard to identify clues that discriminate the cogni-

tive profiles from one another. Actually, the two HW samples on

the left are associated with HC, the two in the middle, with MCI,

and the two on the right, with ES-AD, and as the figure shows,

mere global assessment of the statistical significance or the dis-

criminative power of kinematic or even distortion-related param-

eters is doomed to failure in realistic settings. The figure shows

that a subject might produce a writing that is slow or fast, large or
mall, upright or slanted, legible or less so, etc., regardless of the

ognitive profile s/he belongs to. The average velocity or distortion-

ased features, therefore, are unlikely to discriminate the three

lasses. 

To tackle the issues above and the limitations of the state of the

rt, we propose a novel paradigm for studying HW changes due

o ES-AD and MCI w.r.t HC, inspired by our study on HW changes

ith aging. Instead of considering a unimodal behavioral pattern

or each cognitive profile, we relax this restriction by allowing,

or each, the emergence of a multimodal behavioral pattern. The

ey idea is to perform semi-supervised learning with the objec-

ive of uncovering clusters of subjects, and then to analyze how

hese clusters characterize the cognitive profiles. In addition, in-

tead of relying on (global) average spatiotemporal parameters, we

efine the encoding either by a semi-global parameterization, or by

odeling the full dynamics of each parameter, harnessing thereby

he rich temporal information inherently characterizing online HW.

e present next the corpus and data acquisition, and then detail

ur studies with these two types of HW Dynamics’ encoding in

ection 4 and Section 5 respectively. 

.3. Corpus and data acquisition 

Online HW data were acquired at Broca Hospital in Paris from

hree groups, Healthy Controls (HC), Mild Cognitive Impairment

MCI), and Early-Stage Alzheimer’s (ES-AD). All ES-AD were diag-

osed on the basis of DSM-5 criteria [3] . To be with Early-Stage AD,

 patient was required to have a MMSE over 20, MMSE (Mini Men-

al State Examination) [3] being a clinical scale based on a ques-

ionnaire for assessing cognitive impairment, with a score up to 30

no impairment). On their side, HC subjects underwent neuropsy-

hological tests to ensure they have a normal cognitive profile. All

he subjects from the three cognitive profiles had to be over 60, to

ead and talk French fluently, and to sign a consent form. Patients

ith visual impairment or any medical problem, such as stroke

nd other neurodegenerative diseases, were excluded. The corpus

onsists of 144 participants, 28 HC , 87 MCI, and 29 ES-AD, with

 mean-age of 73.2 ( ± 5.7), 78.5 ( ± 7.6), and 79.9 ( ± 6.4) respec-

ively. HW was acquired on a WACOM Intuos Pro Large tablet with

n inking pen. A paper was fixed on the tablet to allow a visual

eedback as in natural conditions. The tablet records, with a sam-

ling rate of 125 Hz, the pen’s position (x(t), y(t)) and pressure p(t)

ver time, and the pen’s in-air trajectory up to two cm off the ta-

le. The participants were asked to perform seven tasks involving

opying texts, loop series, and drawings. 

. Alzheimer ’s and MCI assessment by semi-global 

arametrization of HW 

Inspired by our study on age, we propose in this section to

haracterize HW alterations due to ES-AD and MCI , w.r.t HC , based

n a semi-global feature encoding. The objective is to uncover

omogeneous subject groups (clusters), and then to analyze how

hese groups are correlated with the cognitive profiles. To this end,

e consider the task of copying, by each participant, of the follow-

ng text in French, extracted from Antoine de Saint-Exupéry’s Le

etit prince : “Tu n’es encore pour moi qu’un petit garçon tout sem-

lable à cent mille petits garçons. Je ne suis pour toi qu’un renard

emblable à cent mille renards. Voici mon secret : on ne voit bien

u’avec le cœur. L’essentiel est invisible pour les yeux.”

.1. Text-based feature extraction 

On each point n of the pen trajectory, we extract point-

ise kinematic parameters such as horizontal and vertical ve-

ocity { V x ( n ), V y ( n )} and its first and second derivatives, i.e.
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Fig. 6. HW samples encoded by velocity, two from HC (left), two from MCI (center), and two from ES-AD (right). 

Fig. 7. The evolution of V y ( n ), A y ( n ) and J y ( n ) along the HW text, for two subjects. The values of the three parameters for subject 2 are much higher, reflecting a much faster 

writing. 
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cceleration { A x ( n ), A y ( n )}, and jerk { J x ( n ), J y ( n )} ( Fig. 7 ). We also ex-

ract pointwise spatial parameters related to direction θ ( n ) and

urvature �( n ), and temporal parameters such as duration of pen-

ifts between consecutive words, and within words. At the stroke

evel, we extract several parameters such as stroke duration and

ength, and normalized jerk [75] , defined as the derivative of accel-

ration normalized w.r.t stroke length and duration. Other point-

ise parameters, such as pen pressure and its variation, are also

ncluded. A stroke is defined as the pen trajectory comprised be-

ween two consecutive extrema of y ( n ) (i.e. at V y ( n ) = 0, where

 y ( n ) is the pointwise vertical velocity). We obtain, as a result, 46

arameters, 22 pen-down features, and 24 pen-up features. Each

eature is then discretized into a histogram of five bins, consist-

ng of the relative frequency of the feature temporal values in each

c

in. Considering 5 bins allows for a slightly higher level of granu-

arity, w.r.t to the 4 bins used by our age study, for encoding the

ynamics in a coarse way. 

.2. Semi-supervised learning 

We propose a new approach that generates subject clusters,

nd analyzes their correlation with the three cognitive profiles. As

he optimal number of clusters and the subset of semi-global spa-

iotemporal features that are discriminant are both unknown, we

onsider a semi-supervised learning in which a Normalized Mutual

nformation feature selection guides a clustering algorithm to op-

imize the trade-off between the number of clusters and the dis-

riminative power of each w.r.t the three cognitive profiles. 



120 M.A. El-Yacoubi et al. / Pattern Recognition 86 (2019) 112–133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

(

(  

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The distribution of HC, MCI and ES-AD 

over the three clusters ( C_t i ), based on the 

three selected features. 

HC MCI ES-AD Total 

C_t 1 2 1 4 7 

C_t 2 3 50 22 75 

C_t 3 23 36 3 62 

Total 28 87 29 144 
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To analyze the quality of each semi-global feature F l (vector of

five bins) in discriminating the three classes ( ES-AD, MCI and HC ),

we perform a Hierarchical Clustering [61] of subjects, based on F l .

Then we compute the Mutual information ( MI ) between the classes

and the obtained clusters as follows: 

MI ( C , A ) = 

N C ∑ 

k=1 

N A ∑ 

i=1 

p ( C k , A i ) lo g 2 

(
p ( C k , A i ) 

p ( C k ) p ( A i ) 

)
(1)

where C and N C are respectively the set and number of clusters,

while A and N A are respectively the set and number of classes

( ES-AD, MCI and HC ). The better a feature, the greater the asso-

ciated MI . As MI increases with the number of clusters, optimiza-

tion with Eq. (1 ), leads to obtaining singleton clusters, consisting

each of one person. Thus, to determine the optimum number of

clusters, we consider, instead, the Normalized Mutual Information

( NMI ) defined as follows: 

NM I ( C, A ) = 

M I ( C, A ) 

( H ( C ) + H ( A ) ) / 2 

(2)

where H(C) is the cluster entropy: 

H ( C ) = −
N C ∑ 

k =1 

p ( C k ) lo g 2 ( p ( C k ) ) (3)

and H ( A ) is the class entropy [20] : 

H ( A ) = −
N A ∑ 

i =1 

p ( A i ) lo g 2 ( p ( A i ) ) (4)

The denominator of Eq. (2) is a tight upper bound of MI ( C,A ),

guaranteeing that NMI is always between zero and one [43] : one

corresponds to highest heterogeneity or disorder, when the per-

sons’ cognitive profiles are equally distributed in each cluster,

while one reflects complete homogeneity or order, when only one

cognitive profile is observed in each cluster. Our feature selec-

tion process by semi-supervised learning consists of the following

steps: 

Step 1 : For each feature, 

a) Perform Clustering with different sizes (number of clusters); 

b) Compute the NMI for each clustering size; 

c) Select the optimal number of clusters, namely the one maxi-

mizing NMI ; 

Step 2 : Select the best feature F 1 ( i = 1 ) , namely the one maxi-

mizing the NMI , based on Step 1 ; 

Step 3 : Forward Feature Selection: i = 2 

Repeat 

Select the i th best feature F i , i.e. the one that, combined with

the previous ( i − 1 ) selected features, maximizes NMI, based on

the optimal number of clusters i = i + 1 

Until NMI no longer increases. 

4.3. Experimental results and discussion 

Our algorithm of NMI -based conjoint feature selection and clus-

tering detects three clusters and the following three features, se-

lected in a decreasing order: F 1 : Number of extrema in the in-air

vertical velocity , F 2 : Time between words , F 3 : Vertical pen-down jerk .

The k th cluster is here referred to as C_t k ,. The letter t refers to the

text the clustering is based on, and superscript 1 or 2 is dropped,

as there is a single clustering stage that characterizes both features

and subjects. Table 3 shows the distribution of HC, MCI and ES-AD

over these three clusters. 
.3.1. Analysis of the obtained clusters 

We observe that the first cluster C_t 1 is very small (comprises

% of persons) and thus can be ignored when analyzing the main

rends (we postpone its analysis to the end of this section). Most

eople pertain to one of the two major clusters, C_t 2 (52%) and

_t 3 (43%), from which a striking finding is revealed: C_t 2 is dom-

nated by ES-AD and MCI subjects, while C_t 3 is dominated by HC

nd MCI . From these two clusters, two major interpretations can

e drawn: 

(i) Leaving aside MCI subjects, the selected features discriminate

HC from ES-AD: C_t 2 comprises 22 ES-AD (76% of ES-AD sub-

jects) and only 3 HC (11% of HC subjects), while C_t 3 com-

prises 23 HC (82% of HC ) and only 3 ES-AD (10% of ES-AD ).

This is remarkable as we include only subjects with early stage

Alzheimer ’s, and this confirms that alterations do show up in

the HW of AD subjects at an earlier stage. 

ii) Despite this, few HC are mixed with ES-AD in C_t 2 and few ES-

AD are mixed with HC in C_t 3 . This confirms our claim that

these two cognitive profiles are not homogeneous, but rather

may contain subgroups with different behaviors. 

ii) Current state of the art treats MCI as a monolithic entity by re-

porting that some HW parameters discriminate MCI as a whole

from the other cognitive profiles, and that some do not. Our

findings, by contrast, reveal that MCI patients are split over C_t 2 
(57%) and C_t 3 (41%), and this shows that they have fine motor

skills shared either by HC ’s or by ES-AD ’s. This corroborates the

definition of MCI as a transitory phase between HC and AD , and

our results are the first of their kind to show two MCI ’s HW

behavioral trends, one leaning towards HC ’s and one towards

ES-AD ’s. 

.3.2. Analysis of the selected features 

Among the three selected features, one is a pen-up feature ( F 1 ),

ne is a pen-down feature ( F 3 ), and one is the time between words

 F 2 ). This shows that these three types of spatiotemporal features

re important to detect different writing styles, those characteriz-

ng cognitive impairment in particular. Features F 1 and F 2 seem to

e relevant as they require visual short-term memory skills when

opying the words, one after another, while F 3 characterizes the

riting movement fluidity. 

As described in Section 4.1 , each feature is encoded over five

rdered bins, the first and last representing the frequency of the

ow and high feature values, and the bins in between representing

he intermediate values. To characterize the HW of each cluster, we

how, in Fig. 8 , the distribution of each selected feature’s bins over

he three clusters. The major observations follow below. 

� F 1 : the 1st bin shows a lower value for C_t 2 w.r.t C_t 3 , while the

opposite is observed for subsequent bins. This means the num-

ber of extrema of pen-up vertical velocity tends to be higher in

C_t 2 , a finding that reveals that the subjects in C_t 2 , dominated

by ES-AD and partially by MCI , have a less fluid HW , character-

ized by a larger number of velocity changes in pen-up trajecto-

ries. 

� The distribution of F 2 shows roughly the same trend as F 1 ,

meaning that the time between words tends to be higher in
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Fig. 8. Distribution of the three selected 5-dimensional features over the clusters ( C_t 1 (green), C_t 2 (red), and C_t 3 (yellow)). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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C_t 2 . This reveals that the subjects of C_t 2 spend more time

in copying words one after another, due probably to cognitive

impairment inducing hesitations and more back and forth eye

movements from the text to be copied to the tablet writing sur-

face. 

� The distribution of F 3 shows the opposite trend to that of F 1 
and F 2 , meaning that the vertical pen-down jerk tends to be

lower in C_t 2 . This is not surprising as jerk 1 is highly correlated

to velocity and acceleration, and thus the subjects in C_t 2 are

characterized by lower jerk as they write more slowly. 

To summarize this feature comparison, we can conclude that

he subjects of C_t 2 write more slowly, less fluidly and with more

esitations. As the subjects in this cluster consist of most ES-AD

ubjects and of about 57% of MCI , this means that fine motor im-

airment characterizes not only early stage AD , but also, and to a

arge extent, its preclinical phase. Fig. 9 shows some HW samples

epresenting C_t 2 and C_t 3 , that highlight the two different behav-

oral trends: slow HW for C_t 2 , characterizing most ES- AD and a

ignificant part of MCI , and fast HW for C_t 3 , characterizing most

C and another significant part of MCI . 

.3.3. Link with our study on age 

The writing style characterizing C_t 2 shows some similarities

ith age category 6, C 2 _A 6 , in our study of age, that uncovered

 subgroup of the oldest age groups, AG 66–75 and AG 76–86 , with a

roper writing style, not shared with other subjects from these

wo groups and from the other age groups, and characterized by

he lowest velocity, acceleration, jerk, with a medium to high in-air

ime. This suggests that the AG 66–75 and AG 76–86 subjects in C 2 _A 6 

ight have a cognitive decline that share some fine motor skill

mpairments with ES-AD and a part of MCI . This may also mean

hat the three HC subjects pertaining to C_t are similar to those
2 

1 Jerk corresponds here to pointwise jerk over time and is not to be confused 

ith the normalized jerk per stroke, found in some studies to be correlated with 

remor. 

4

 

g  

s  

B  
f C 2 _A 6 , which explains why they end up with most ES-AD in the

ame cluster. 

.3.4. Analysis of tiny cluster C_t 1 
This cluster is composed of 2 HC , 1 MCI , and 4 ES-AD .

ig. 8 shows clearly that, w.r.t C_t 2 and C_t 3 , C_t 1 is mainly charac-

erized by a much more frequent high number of extrema of in-air

ertical velocity, and long time between words (3rd, 4th and 5th

ins of F 1 and F 2 are much higher), as well as a much more fre-

uent low vertical pen-down jerk (4th and 5th bins of F 3 are much

ower). This corresponds to a neat writing characterized by very

low movement and poor fluidity ( Fig. 10 ), as the subjects resort to

requent stopping, generating thereby more velocity extrema (min-

ma and maxima). The subjects spend also a larger time between

ords, which again favors a tidy writing. 

This peculiar writing style deserves special attention as it char-

cterizes none of the three cognitive profiles. It requires further

nalysis to rule out potential annotation issues, and to scrutinize

ther metadata of the subjects, by checking whether additional

actors may explain why their writing is so distinct from the rest.

hat said, however, this cluster indirectly highlights one of the

ain strengths of our framework, and plays a key role regarding

he quality of the obtained clusters. Despite its tiny size, isolat-

ng automatically C_t 1 allowed discarding few subjects, but with

utlier-like HW dynamics, which enabled the model to unveil the

wo major behavioral trends featured by clusters C_t 2 and C_t 3 .

ithout our automatic detection of three homogeneous clusters,

_t 1 would have “corrupted” its closest cluster, C_t 2 (with slower

W than C_t 3 ) and compelled the clustering algorithm to split the

ubjects therein in several tiny groups, loosing thereby the emer-

ence of the meaningful and reliable behavioral trend of C_t 2 . 

.3.5. Comparison of semi-global with global parameterization 

To assess our semi-global feature parameterization w.r.t to the

lobal one, which is adopted by the state of the art, we run the

ame study as above but by considering this time global features.

ased on the Normalized Mutual Information ( NMI ) scheme, the
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Fig. 9. Text samples from C_t 2 (top) and C_t 3 (bottom), showing two HW behavioral trends. slow for C_t 2 , and fast for C_t 3 . 

Fig. 10. Text samples from the tiny cluster, pertaining to 1 HC , 1 MCI , and 1 ES-AD . 

Table 4 

The distribution of HC, MCI and ES-AD 

over the three clusters ( C_tg k ), based on 

the nine selected global features. 

HC MCI ES-AD Total 

C_tg 1 19 37 2 58 

C_tg 2 7 48 21 76 

C_tg 3 2 2 6 10 

Total 28 87 29 144 

 

 

 

 

 

 

 

 

 

 

Table 5 

NMI values for global and semi-global feature parametriza- 

tion. For the latter, each feature is encoded by five bins. 

NMI Number of features 

Global parameters 0.10 9 

Semi-global parameters 0.14 3 × 5 
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detected number of clusters is again 3, shown in Table 4 , with an

uncovering of a similar behavior of the MCI class, split over two

clusters (one related to HC and one to ES-AD ), with again a tiny

cluster of 10 subjects (2 HC ; 2 MCI ; 6 ES-AD ). The fact that the MCI

class is split into two parts confirms its bimodal behavioral trend

unveiled with semi-global parameterization. Interestingly, the tiny

cluster above comprises all the seven subjects (2 HC ; 1 MCI ; 4 ES-

AD ) of the analogous one, obtained in Section 4.3.4 with the semi-

global setting. This consistency means that these subjects have a

HW style so slow and tidy that they are set apart from the rest, re-
ardless of the granularity of the feature encoding adopted, global

r semi-global. 

Despite these similarities, however, the NMI value, as shown

n Table 5 , is higher for our semi-global parametrization, which

roves its better discrimination of the three cognitive profiles ( ES-

AD, MCI, HC ). Fig. 8 sheds light on the reason why: a general obser-

ation, indeed, is the overall significantly decreasing size from bin

 to bin 5 regardless of the features. Despite their small size, how-

ver, the last bins correspond to infrequent but subtle events, that

re important for discriminating different writing styles, as this is

hown for F 1 , F 2 and F 3 . Without our semi-global parametriza-

ion allowing an automatic detection of such subtle events, the bin
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Fig. 11. Four llll series from subjects with different cognitive profiles. Color encodes 

the velocity dynamics. 
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alues encoding these events would have been diluted into the

lobal values through the averaging process. 

In terms of features, nine global parameters are selected: Task

uration, average pen-down velocity magnitude, average horizontal

n-air velocity, average pressure variation, average normalized in-air

erk, average number of extrema of pen-down vertical velocity, av-

rage vertical in-air jerk, Total pen-down time, Total in-air time . As

n the semi-global parameterization case, the selected global fea-

ures convey information from both the in-air trajectory and the

n-tablet one. Four out of nine are kinematic (velocity and jerk-

ased), and three are temporal. 

If we disregard the dimensionality, the number of selected

emi-global parameters is much lower (3 vs. 9). However, as they

re encoded over five bins, an additional selection of a semi-global

arameter implies adding five dimensions, which limits the num-

er of selected features, given the small size of the training dataset.

n a larger dataset, we can expect a larger improvement gap of the

emi-global parameter setting over the global one. 

A final remark is that, w.r.t our study on age, our semiglobal

arametrization scheme for assessing HC, MCI and ES-AD , is based

nly on a unique clustering stage. This is because our spatiotem-

oral parameters are computed over the whole text. An improve-

ent, in this regard, is to consider a two-stage clustering, where

he first operates on words instead of the whole text, and the sec-

nd clusters the subjects based on the distribution of the set of

ords of each subject over the first stage clusters. To do this, how-

ver, a reliable segmentation of the text into words needs first to

e performed. 

. AD and MCI assessment by representation learning from HW 

rajectories 

Encouraged by our findings with semi-global feature encoding,

e take a leap forward by modeling the full dynamics of HW

trokes, in a task involving writing four series of four cursive con-

atenated l loops (llll) ( Fig. 11 ). As modeling the HW trajectory for

ognitive assessment has not been addressed before in the liter-

ture, we have chosen the loops series to study its potential, as

hey allow a text-dependent study that can reveal clearly the be-

avioral trends related to the subjects’ health conditions, by dis-

arding from the outset any variations due to change of words or

haracters. Once the potential is confirmed, the approach can be

pplied in a straightforward manner to any other task. 

The key our approach builds on is to harness the online HW

ime ordering to automatically learn, for each raw kinematic pa-

ameter, feature representations [6] in an unsupervised way, in-
tead of considering handcrafted global or semi-global features, as-

umed implicitly to be discriminant. The modeling of HW dynam-

cs for feature representation has never been considered before, es-

ecially, in the context for health assessment. 

Our modeling relies first on automatically segmenting the (llll)

eries into individual loops. The segmentation allows to signifi-

antly increase the size of the training data, and accordingly the

eliability of the clustering. It also allows generating individual

oop-based clusters, that are much more likely to be homogeneous

han would be the clusters of entire llll series. 

We show next how this representation learning can be ex-

loited either in a semi-supervised setting to uncover the link be-

ween homogeneous clusters and the cognitive profiles, or in a su-

ervised one for classification. 

.1. Segmentation into loops and feature extraction 

We segment each continuous llll series into isolated instances

f letter l, from which we keep only the loop part for subse-

uent feature extraction. The segmentation process is the follow-

ng: a low-pass filter is applied to smooth V y (n), the vertical ve-

ocity signal of the llll series, by setting the cutoff frequency to the

eries’ fundamental frequency. We then apply the inverse Fourier

ransform and segment the trajectory at points n where V y (n) = 0.

ach loop is then retrieved by merging its two consecutive strokes,

 stroke being the portion between two consecutive points with

 y (n) = 0. This process is illustrated on Fig. 12 . 

As shown by Fig. 12 , setting the cutoff frequency to the funda-

ental frequency allows to segment the loops, irrespective of the

rregularities and tremors in shaky handwriting, in a much reliable

ay than manually-based thresholding techniques would. 

We extract, at each loop point, the velocity in x and y direc-

ions, V x (n) and V y (n). An illustration of these velocities is given

n Fig. 13 that shows the temporal velocity magnitude |V(n)| for

ome loop samples. For the studies below, we use only velocity to

ncode HW but we will show how the other features can be inte-

rated as well. 

.2. Two-stage clustering 

In this task, the number of subjects is 141 (27 HC, 87 MCI,

7 ES-AD), three less than those participating in the text copy-

ng task considered by the semi-global approach (three people did

ot perform the loops’ task). As each person writes four llll se-

ies, the number of total segmented loops is 2263 (a little more

hat 16 × 141 as few subjects produced sometimes more than four

 loops). 

We consider a two-stage clustering based on the loop’s veloc-

ty’s trajectory. To model HW’s full dynamics, we propose a tem-

oral clustering of the loops, considered as time series, by a K-

edoids algorithm taking as similarity measure DTW (Dynamic

ime Warping) that accommodates the data sequential aspect. This

lustering generates a dictionary of prototype medoids, regardless

f the cognitive profile, that serves as input to the 2nd stage clus-

ering. The latter then computes for each subject the distribution

histogram) of his/her loops over the medoids (1st stage clusters).

ereafter, the 1st and 2nd stage clusters will be referred to, respec-

ively, as C 

1 _l k , and C 

2 _D j . Here, C 

1 _l k designates the k th cluster of

oops (hence the letter l), obtained at the 1st stage, while C 

2 _D j 

efers the j th cluster of subjects with different cognitive profiles

HC, MCI or ES-AD), and obtained at the 2nd stage. Letter D stands

or Disease, in order to distinguish the second clusters here from

hose related to age in Section 2 . 
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Fig. 12. Loop segmentation: (a) input loops series; (b) the Vy ( n ) signal, (c) low-pass filtering by the fundamental frequency; (d) segmentation into ascending and descending 

strokes; (e) extraction of the loops. Top: fluid writing; bottom: shaky writing. 

Fig. 13. Loop samples with color encoding velocity magnitude: red stands for high 

values, and blue for low ones. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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2 In Fig. 13 , the loop sizes are mostly homogeneous. The variations that appear 

on some clusters can be explained by the small number of clusters (medoids) and 

the reliance only on the velocity signal for the clustering. Consider instead position 

will generate other clusters, that emphasize more the size information. 
5.2.1. First stage clustering 

Fig. 14 shows the results for K = 8 and K = 30 medoids. In each

case, the K medoids are the major prototypes of the total set of

loops produced by HC, MCI and ES-AD , and as shown, they repre-

sent a large diversity in terms of dynamics and shape. Each medoid

reflects a different and rich combination of several loop features

including full velocity profile, size, slant, fluidity, etc . 

Fig. 14 also shows the effect of increasing the number of clus-

ters. For K = 8, the medoids represent the major prototypes in

terms of velocity, size and slant, as they attract, each, a relatively

large number of loops. A much higher K (e.g. 30 here), by con-

trast, allows the medoids to capture, each, only the loops they are

close to. This allows the algorithm to detect new prototypes with

much subtler spatiotemporal dynamics, such as very fast medoids,

or those with moderate and mostly low velocity but with shaky

writing that induces loss of smoothness and fluidity. High values

of K , nonetheless, imply that the obtained clusters have a relatively

low size. This underlines the importance of choosing a K value

granting a good trade-off level between the depth of details in the

medoids and the representativeness of the associated clusters, de-

pending on the data size and the classification task. 
Fig. 14. Medoids obtained on the (V x ,V y ) trajectory for: (A) K = 8 and (B) K = 30 medoi

values, and blue, low ones. (For interpretation of the references to color in this figure leg
Fig. 15. (A) displays samples from four loop clusters when K = 8

4 chosen among 8). These clusters were selected as they convey

he main tendencies observed for other clustering results with sim-

lar but different K values. Each row corresponds to a cluster and

ncludes, for presentation clarity, only the closest loops to their

edoid, which appears first. Along with each cluster’s index, we

isplay the number of loops it contains, as well as their distribu-

ion over the three cognitive profiles. As shown, each cluster is as-

ociated with a unique combination of several HW features like the

ull velocity dynamics profile, fluidity, shakiness, slant, and even,

o a large extent, size. 2 This is remarkable, as the input to clus-

ering is merely loop raw velocity trajectories, which confirms that

ur scheme allows an unsupervised representation learning from se-

uences , a problem that is not addressed by state of the art repre-

entation learning [6] . The rich set of features conjointly uncovered

hows the key advantage of modeling the full sequence of each

oop instead of simple statistics such as the average of each spa-

iotemporal parameter, taken separately. 

A more in-depth analysis of each cluster gives us insights on the

ehavioral trends of the three cognitive profiles. If we leave aside,

or the moment, the MCI class, we observe the following main ten-

encies ( Fig. 15. (A)): 

� C 1 _l 4 contains loops mostly originating from HC (64 HC; 4 ES-

AD ), characterized by highly fluid loops with moderate size, and

medium to high velocity on their ascending and descending

phases. ES-AD subjects, therefore, seem to have trouble with

maintaining this typical writing style. 
ds respectively. Color stands for velocity magnitude: red means high local velocity 

end, the reader is referred to the web version of this article.) 
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Fig. 15. Samples from some clusters for different numbers of K medoids. (A): K = 8, from which four typical clusters are shown; (B) K = 30, from which six typical clusters 

are shown. For each cluster, we report its number of loops, and the number of loops for each class. 
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� C 1 _l 2 shows the opposite trend (10 HC; 48 ES-AD ) as it con-

tains mid-sized to large loops, with mostly low velocity. Here,

the subjects actually try to write faster at the onset of the as-

cending or descending phase, but quickly fail to maintain the

rhythm. This results in a loss of fluidity as manifested by the

sudden change of loop velocity or slant. This is an example

of behavioral handwriting impossible to detect from the global

or semi-global spatiotemporal parameters, but which we un-

cover automatically thanks to our representation learning on

the loop’s velocity sequences. Given the ( HC; ES-AD ) distribu-

tion, the HW impairments featured by this cluster seem to

appear for AD at an early-stage, although they may show-up

occasionally for a HC subject (one subject usually produces

4 × 4 = 16 loops, and C 1 _l 2 contains only 10 HC loops, i.e. less

than one HC subject in average). 

� C 1 _l 8 comprises loops with a moderate velocity in the ascend-

ing phase, that decreases in the descending phase, while fluid-

ity is maintained throughout the loop. This is a balanced clus-

ter in terms of HC (113) and ES-AD (94), and given the fluidity

shown, the ES-AD subjects here are those who maintained good

fine motor skills, contrary to those in C 1 _l 2 . 

� C 1 _l 3 consists of a large number of HC and ES-AD loops, but

with a clear skewed distribution in favor of ES-AD (87 HC; 189

ES-AD ). It is characterized by mid-sized to very small loops,

with low velocity, shakiness and loss of fluidity. Fluidity loss

and shakiness show up as the subjects struggle to produce such

small and slow loops, which hampers a natural HW rhythm.

This style sheds light on the correlation between micrographia

and fluidity loss, that can be developed at an early stage of AD .

e  
This correlation between two types of HW impairment is the

kind of findings that are not possible with state of the art ap-

proaches, but which are brought to light thanks to our frame-

work combining semi-supervised clustering and sequential rep-

resentation learning. Despite these impairments, an interesting

observation, though, is that this style is shared by HC and ES-

AD . The HC subjects here might be similar to those in C 2 _A 6 , the

cluster of aged people uncovered by our age study ( Section 2 ),

who write very slowly. We may speculate that the HC subjects

of this cluster and those of C 2 _A 6 exhibit a clear behavioral de-

cline induced by either of the two following reasons. The first

is that the subjects in C 2 _A 6 and C 1 _l 3 , even if they are clini-

cally healthy, may have an aging cognitive decline that induces

similar handwriting alterations to those manifested in ES-AD ’s

HW . The second is that these elders may actually already be

developing undiagnosed cognitive impairment. 

Now, an explanation of MCI is in order. Fig. 15. (A) shows that

or all the clusters, the MCI class is always a significant part. This

an be explained by its larger size (87 MCI vs. 27 HC , and 27 ES-

D ), and by the fact that MCI covers a large cognitive spectrum

anging from the mildest cognitive impairment, when MCI is diag-

osed at an early stage, to the strongest one, just before AD is di-

gnosed. This explains also why MCI appears in clusters that com-

rise mostly people with no cognitive decline (e.g. C 1 _l 4 ), but also

n clusters that comprise people with strong cognitive decline (e.g.

 

1 _l 2 ), possibly associated with AD . 

The results above show the power of our semi-supervised rep-

esentation learning in uncovering, even with few clusters (e.g. the

ight above), the writing styles that define the main behavioral



126 M.A. El-Yacoubi et al. / Pattern Recognition 86 (2019) 112–133 

Table 6 

NMI for the optimal number of clusters in the 2nd stage, conditionally on the 1st stage number 

of medoids. 

1st stage medoids 4 5 6 7 8 9 30 50 100 

2nd stage clusters 5 5 4 6 6 3 4 5 3 

NMI 0.04 0.02 0.03 0.04 0.06 0.03 0.04 0.03 0.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Distribution of the cognitive profiles over 

the 2nd stage clusters C 2 _D j , based on 

nine medoids (1st stage). 

HC MCI ES-AD Size 

C 2 _D 1 4 15 6 25 

C 2 _D 2 18 46 7 71 

C 2 _D 3 5 26 14 45 

Size 27 87 27 141 
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trends of the cognitive profiles. If we increase the number of clus-

ters (medoids), this capability increases accordingly. Fig. 15. (B) dis-

plays samples from six loop clusters when K = 30 (6 chosen among

30), as they are typical also of the kind of clusters obtained at such

higher values of K . The analysis of the six clusters shows an inter-

esting evolution of the writing styles as K increases. Concretely, the

top four clusters of Fig. 15. (B) can be considered as similar to the

four clusters of Fig. 15. (A). In each set, (A) or (B), indeed, the top

cluster underlines a typical HW style of HC (barely any ES-AD ), the

second from the top characterizes a typical style of ES-AD (barely

any HC ) with degraded style, the third detects the ES-AD subjects

still maintaining good fine motor skills, and the 4th the HC sub-

jects with significant cognitive decline, the HW symptoms of which

are shared with ES-AD and the MCI subjects with more pronounced

cognitive impairment. Notwithstanding, if we scrutinize both sets,

it becomes clear that the ones on the right (obtained with K = 30)

are much more homogeneous: the top cluster on the right, for in-

stance, includes only loops with consistently moderate velocity in

their ascending and their descending phases, while its left counter-

part comprises much more variations, reflected in the loops’ mod-

erate to high velocity appearing inconsistently on the ascending

or descending phase. This difference is maintained overall, as the

clusters on the right side have higher homogeneity in their ve-

locity profile. Besides, with K = 30, new clusters emerge, like the

one at the bottom ( C 1 _l 20 ), which includes very fast loops, or the

second ( C 1 _l 18 ) and the fifth ( C 1 _l 16 ) consisting of very slow and

non-fluent loops, with different levels of shakiness. It comes as no

surprise that these three clusters are highly discriminative, as re-

flected by their cognitive profile distributions which are very sharp

( C 1 _l 18 and C 1 _l 16 contain respectively only two and one loops of

HC , while C 1 _l 20 does not contain any ES-AD ’s). 

The higher homogeneity of fine motor skills observed in the

clusters, as K increases, underlines the fact that a high K value al-

lows the medoids to attract, each, only their closest loops, in terms

of the DTW distance, used in our unsupervised learning. However,

as K continues to increase, the clusters become even more homo-

geneous but with small sizes, which in turn, decreases their relia-

bility of characterizing an actual behavioral trend that is not pecu-

liar to the data at hand, but rather generalizable to unseen data.

To overcome this issue, we resort again to the Normalized Mu-

tual Information ( NMI ) criterion, to minimize both the number of

medoids (loop clusters) and the number of clusters at the second

(subject-based) clustering stage, as detailed next. 

5.2.2. Second stage clustering 

As the optimal number of clusters (groups of subjects) in the

2nd stage depends on the size of the dictionary of loop prototypes

(medoids), we perform a joint optimization of the two sizes (re-

spectively K 1 and K 2 ), based on NMI, to maximize the mutual in-

formation between the 2nd stage and the cognitive profiles, while

penalizing the increase of both K 1 and K 2 . Table 6 shows some val-

ues of NMI for different combinations of the two sizes. The opti-

mum is obtained for ( K 1 = 8, K 2 = 6). Note that much higher val-

ues of K 1 were not selected even if they show a finer motor skill

characterization of the cognitive profiles (as shown for K 1 = 30 in

Fig. 15. (B)). The reason is that we select the first local NMI max-

imum, instead of the global one, to minimize, as much as possi-
le, the number of clusters, thus ensuring that their sizes are suf-

ciently large to allow reliable interpretation. 

.2.2.1. Analysis of the ( K 1 = 9, K 2 = 3) clustering pair. Before delv-

ng in the analysis of the optimal clustering pair ( K 1 = 8, K 2 = 6),

e start first by analyzing the ( K 1 = 9, K 2 = 3) combination as it

onsists of the fewest number of subject clusters, which allows fo-

using first on the major behavioral trends on the data. 

Table 7 shows the distribution of the subject’s cognitive pro-

les over the three clusters. The results are strikingly like those

btained with our semi-global parametrization, shown in Table 3 .

his confirms our findings that HW alterations do appear for AD at

n early stage, and discriminate HC from ES-AD in most cases, and

hat MCI ’s HW is subject to two behavioral trends, one leaning to-

ard HC ’s and one towards ES-AD ’s. The new findings, nonetheless,

re obtained only with the raw velocity signal on the loop’s writing

ask, consisting usually of 16 ‘l’ instances, while those obtained by

he semi-global parametrization relied on a feature selection oper-

ting on 46 spatiotemporal parameters extracted from a rich text

f 44 words, made up of over 200 characters. 

The distribution of the three clusters over the nine medoids

 Fig. 16 ) confirms our interpretations at the first level, as we see

hat the cluster with mostly HC and MCI ( C 2 _D 2 , in blue), com-

rises people mostly producing fluid loops with moderate to high

elocity, while C 2 _D 3 (in red), with mostly ES-AD and MCI , com-

rises mainly people producing shaky loops with lower velocity

nd size. Again, a small group of subjects ( C 2 _D 1 , in yellow) ap-

ears, similar to that observed with the semi-global scheme. 

Given the consistency of the two behavioral trends of MCI , we

ave studied their correlation with two metadata, age and MMSE

Mini Mental State Examination). Table 8 shows the same results

n Table 7 , but enriched by the mean and standard deviation of

MSE and age, for each cognitive profile and in each cluster. If we

ocus again on the two largest clusters, C 2 _D 2 and C 2 _D 3 , we find

hat the MMSE and age information sources give new insights on

ur results, summarized below: 

� If we compare the MMSE mean values (yellow cells), we ob-

serve that ES-AD subjects in C 2 _D 2 have a much higher MMSE

than those in C 2 _D 3 (24.4 vs 21.9). This confirms that higher

MMSE is correlated with maintaining fine motor skills, like

those shown in the ES-AD ’s writing in cluster C 1 _l 8 . Not surpris-

ingly, C 2 _D 2 is the only 2nd stage cluster represented by C 1 _l 8 
(Medoid 8) ( Fig. 16 ). Likewise, the averagely higher MMSE for

MCI subjects in C 2 _D 2 w.r.t C 2 _D 3 (28.13 vs. 26.9) may be one

of the explanations why the former lean towards a HC behav-

ior ( C 2 _D ) while the second lean to an ES-AD ’s ( C 2 _D ). Note
2 3 
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Fig. 16. Distribution of the three optimal clusters obtained in the 2nd stage, based on nine medoids ( M k ) in the 1st stage. 

Table 8 

Distribution of HC, MCI and ES-AD , based on nine medoids (1st stage), enriched by the mean and standard deviation of MMSE 

and age, for each cognitive profile and in each cluster ( C 2 _D j ). 

HC MC ES-AD Total Size 

MMSE Age Size MMSE Age Size MMSE Age Size 

C 2 _D 1 28.8 ± 1.3 75.5 ± 3.7 4 28.26 ± 1.9 79.4 ± 6.4 15 22.6 ± 5.0 79.5 ± 6.2 6 25 

C 2 _D 2 28.4 ± 1.5 72.6 ± 6.2 18 28.1 ± 1.7 75.7 ± 8.4 46 24.4 ± 2.5 78.4 ± 6.9 7 71 

C 2 _D 3 29.2 ± 0.4 73.6 ± 5.8 5 26.9 ± 2.4 82.0 ± 4.8 26 21.9 ± 3.4 80.0 ± 6.7 14 45 
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that this difference is not maintained for HC where the MMSE

is slightly lower in C 2 _D 2 . 

� A similar trend is observed for the mean age (orange cells),

which is consistently lower in C 2 _D 2 w.r.t C 2 _D 3 , for the three

cognitive profiles, especially for MCI where the margin is much

wider. Age advancement, therefore, may explain why MCI pa-

tients in C 2 _D 3 fail to maintain their fine motor skills. 

� For C 2 _D 1 , no clear trend seems to emerge. This cluster is

mainly covered by Medoid 6 ( Fig. 16 ) that characterizes a some-

what neat writing. This cluster has a larger size than the similar

one detected with the semi-global scheme (25 vs. 7), but this is

because we are not considering here the best clustering con-

figuration, but one with the lowest number of clusters in the

second stage ( K 1 = 9, K 2 = 3); C 2 _D 1 , as a result, attracts a rela-

tively larger number of subjects. 

Overall, the MMSE and age show a correlation with the mainte-

ance of fine motor skills in ES-AD and MCI subjects. This effect,

evertheless, is not systematic, as the standard deviation values

how that, for both MMSE and age, an overlapping is observed be-

ween their distributions in C 2 _D 2 and C 2 _D 3 . This was expected

ince, besides MMSE and age, other key factors may explain the

wo major MCI behavioral trends we observe, chief among them,

he type of MCI that is diagnosed. Indeed, subjects with MCI are
sually classified into amnestic MCI or non-amnestic MCI subtypes,

ased on standard neuropsychological tests. The former suffer from

linically significant memory deficits, while the latter demonstrate

mpairment in non-memory cognitive domains including language,

xecutive functions, or visuospatial functions. These subtypes can

e further classified into single domain or multiple domain MCI s,

ased on the involvement of a single domain or multiple different

ognitive domains [74] . These MCI annotations, unfortunately, are

till not available to us, at this point of our study. 

.2.2.2. Analysis of the ( K 1 = 8, K 2 = 6) optimal clustering pair. If we

ow select the actual optimal clustering pair ( K 1 = 8, K 2 = 6), we

btain, as Table 9 shows, a much higher discrimination of the cog-

itive profiles, which are split into more homogeneous groups with

maller sizes. This is reflected by the emergence of two clusters

ith no ES-AD ( C 2 _D 1 and C 2 _D 5 ), and of a cluster with no HC

 C 2 _D 2 ). 

This higher discrimination is also reflected by sharper distribu-

ions of the 2nd stage clusters over the medoids ( Fig. 17 ), which

nderlines the capture of more homogeneous writing styles (fine

otor skills). It is also reflected by sharper MMSE and age dis-

ributions over the subject clusters ( Table 10 ), which highlights

he overall higher homogeneity of these writing styles in terms of

he two metadata as well. An in-depth analysis of each 2nd stage
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Fig. 17. Distribution of the six optimal clusters obtained in the 2nd stage, based on eight medoids ( M k ) in the 1st stage. 

Table 9 

Distribution of the cognitive profiles over 

the 2nd stage clusters ( C 2 _D j ), based on 

eight medoids (1st stage). 

HC MCI ES-AD Total 

C 2 _D 1 4 10 0 14 

C 2 _D 2 0 16 2 18 

C 2 _D 3 5 4 5 14 

C 2 _D 4 9 25 12 46 

C 2 _D 5 6 9 0 15 

C 2 _D 6 3 23 8 34 

Total 27 87 27 141 
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cluster in terms of HW features (velocity, fluidity, shakiness, etc.)

can be done as before, based on Fig. 17 , and a careful observa-

tion of the loops pertaining to each medoid-based cluster, but we

drop this analysis due to the amount of space required to describe

the details of six clusters ( C 2 _D j ), and also because such an analy-

sis would be less reliable given the smaller sizes of the groups of

people in each cluster ( C 2 _D sizes). 
Table 10 

MMSE and age of the cognitive profiles in each 2nd stage cluster 

HC MC 

Size MMSE Age Size MMSE 

C 2 _D 1 4 29.2 ± 1.0 69.0 ± 6.7 10 28.6 ± 1.2 

C 2 _D 2 0 N/A N/A 16 28.2 ± 2.0 

C 2 _D 3 5 29.4 ± 0.6 71.0 ± 3.7 4 28.5 ± 1.7 

C 2 _D 4 9 28.8 ± 1.0 77.0 ± 4.1 25 27.6 ± 2.1 

C 2 _D 5 6 27.0 ± 1.4 71.6 ± 5.6 9 28.6 ± 1.5 

C 2 _D 6 3 29.3 ± 0.6 73.6 ± 8.1 23 27.0 ± 2.4 
.2.3. Comparison with the global parametrization in the loops’ task 

To complete our analysis, we run another clustering of the sub-

ects based on the average velocity computed on the whole loops

ask, as commonly adopted in the state of the art, instead of our

ull dynamics modeling. Based on the mean ( V x ,V y ) of each subject,

he NMI -based semi-supervised scheme detects seven clusters with

 NMI value of 0.03, which is much lower (half) than the best NMI

alues observed for the 2nd stage clustering ( Table 6 ). This shows

he huge improvement brought by modeling the full trajectory dy-

amics over considering mere global parameters, and by breaking

riting style modeling into two stages, the first detecting the spa-

iotemporal writing styles at a HW unit level (here loops, but it can

e words as shown in our age study), and the second detecting the

riter’s variability over these unit-based handwriting styles. 

If we now analyze the seven clusters, denoted by C_Dg k , and

hown in Table 11 , it becomes clear, that the clusters with higher

iscrimination of HC vs. ES-AD , for instance, become smaller. This

an be explained by the poor discriminative capabilities of the av-

rage velocities, which compels the clustering algorithm to detect

maller groups for which this average is discriminant. This comes
( C 2 _D j ) (8 medoids in the 1st stage). 

ES-AD Total 

Age Size MMSE Age 

75.0 ± 6.8 0 N/A N/A 14 

75.6 ± 10.2 2 22.5 ± 0.7 77.0 ± 9.9 18 

74.2 ± 4.5 5 24.8 ± 2.9 78.8 ± 7.2 14 

80.7 ± 4.6 12 22.3 ± 4.2 78.0 ± 6.8 46 

73.4 ± 9.4 0 N/A N/A 15 

81.7 ± 4.3 8 22.1 ± 3.5 83.3 ± 4.0 34 
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Table 11 

Distribution of the cognitive profiles over 

the clusters ( C_Dg k ), based on global 

parametrization. 

HC MCI ES-AD Total 

C_Dg 1 12 29 9 50 

C_Dg 2 2 10 6 18 

C_Dg 3 1 8 0 9 

C_Dg 4 9 20 5 34 

C_Dg 5 1 12 6 19 

C_Dg 6 2 2 0 4 

C_Dg 7 0 6 1 7 

Total 27 87 27 141 
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ith a price, though, as the small size of these clusters (clusters

_Dg 2 , C_Dg 3 , C_Dg 5 , C_Dg 6 and C_Dg 7 ) makes them unreliable for

rawing meaningful conclusions; these clusters are likely to be

verfitting the data. 

An additional and important shortcoming with global

arametrization of the spatiotemporal features is the much

oorer visualization and interpretability properties they offer. By

elying only on average parameters, they are unable to explain and

o show the subtle local dynamic changes differentiating different

ognitive profiles, and groups within each cognitive profile. 

.3. Classification 

.3.1. Bayesian scheme for the two-class (HC vs. ES-AD) 

iscrimination problem 

So far, we have proposed semi-supervised learning techniques

n which the label information was used to guide the clustering al-

orithms to select the optimal number of clusters, whether at the

eature level or the subject level. This was motivated by our goal

f automatically discovering the most relevant features for charac-

erizing ES-AD and MCI, w.r.t HC, as they are unknown a priori.

ur representation learning, however, can be harnessed in a clas-

ification setting as the 1st stage medoid-based clusters are, each,

iscriminant to some degree, given their unbalanced distribution

n terms of the cognitive profiles associated with the loops they

ontain. For classification, we consider only the two-class (HC vs.

S-AD) classification setting. The reason is that MCI is overly rep-

esented, and its inclusion would entail an unbalanced data distri-

ution that is not suitable for supervised learning. Selecting a sub-

et of MCI, instead, is not viable as this health condition includes

 large diversity of types (amnestic, executive, multidomain, etc.)

hat are still unavailable in our dataset, but which are important

or annotating the MCI subjects, prior to include MCI in a super-

ised classification task. 

To merge the intrinsic information carried by the clusters, we

onsider a Bayesian formalism for classifying a writer as AD or HC ,

hat aggregates probabilistically the contributions of the loop clus-

ers (medoids), by leveraging the discriminative power of each. We

se Bayes’ rule to compute, for each subject, the posterior proba-

ility to be ES-AD or HC given his/her respective data (loops). Let

s assume that the i th subject, s i , produces N i ( ∼4 × 4 = 16) loops,

istributed over the clusters obtained by K-medoids , performed on

he loops’ training set. The posterior probability of class C k ( ES-AD

r HC ), given data D i (loops from s i ), is: 

 ( C k / D i ) = 

P ( D i / C k ) × P ( C k ) 

P ( D i ) 
(5) 

here P ( D i ) = 

∑ 

k = HC, ES−AD P ( D i / C k ) × P ( C k ) and P ( C k ) is the a pri-

ri probability of class k (50% in our dataset). Assuming the data

 (loops) from subject s are class-conditionally independent, we
i i 
ave: 

 ( D i / C k ) = 

N i ∏ 

j=1 

P 
(
M 

i 
j / C k 

)
(6) 

here M 

i 
j 

is the closest cluster (Medoid) to the j th loop of subject

 i . Thus, 

 (M 

i 
j / C k ) = 

P ( C k /M 

i 
j 
) × P 

(
M 

i 
j 

)
P ( C k ) 

(7) 

 ( M 

i 
j 
) being the a priori probability of cluster M 

i 
j 
, estimated by: 

 

(
M 

i 
j 

)
= 

N B i 
j 

N Total 

(8) 

ere N 

M 

i 
j 

is the number of loops in cluster M 

i 
j 

and N Total is the total

umber of loops ( ∼16 loops x 54 participants). Likewise, 

 

(
C k /M 

i 
j 

)
= 

N 

j 

k 

N B i 
j 

(9) 

 

j 

k 
being the number of loops in cluster M 

i 
j 

from class k ( ES-AD or

C ). Each subject i is then classified by selecting the class ( HC or

S-AD ) with the maximum a posteriori probability: 

 

∗ = arg max 
k= HC ;ES −AD 

P ( C k / D i ) (10) 

.3.2. Experiments 

For experiments, we consider the two-class dataset consisting

f 27 ES-AD and 27 HC . We use the Leave-one-person-out proce-

ure for performance evaluation. We did not use the NMI criterion

ere, as this would have entailed to consider it only on the train-

ng data, which is heavy given our leave-one-out scheme involving

4 different training datasets. To get meaningful clusters w.r.t the

ize of data, we have tried several numbers of clusters, by varying

 between 10 and 50, and obtained similar optimal performance

or K between 30 and 50. Here, we report the results for K = 30. 

For comparison, we assess the main classification approach

sed in the literature, namely Linear Discriminant Analysis ( LDA ).

e implement LDA as in [82,36,28] , by extracting global kine-

atic features, and we carry out two experiments: in the first,

DA takes as input the mean velocity ( V x , V y ) computed over each

riter’s loops, and in the second, a combination of global kine-

atic features computed in the same way: ( V x , V y ) , mean acceler-

tion ( A x , A y ) , and mean jerk ( J x , J y ) . Table 12 reports the classifi-

ation rates of these three experiments on the training and valida-

ion sets. Note that we do not report confidence intervals for LDA ,

ince it is not subject to a random parameter initialization, but we

o so for our Bayesian approach since it relies on the clustering of

oops, obtained from an initialization of the medoids (cluster cen-

ers); we perform then 10 independent classification runs and re-

ort the classification mean and its standard deviation. 

As shown in Table 12 , on the validation set, LDA , with ( V x , V y )

s input, obtains a classification rate of 51.9%, and of 50%, when

( V x , V y ) , ( A x , A y ) , and ( J x , J y ) are combined. These rates corre-

pond essentially to chance, as a blind classifier, choosing system-

tically HC for output, gets a 50% classification rate. Incidentally,

hese results confirm those in [85] , obtained on a similar task

3 × 8 loops), that report no significant difference between AD and

C , with Anova , based on the mean stroke velocity, despite includ-

ng all AD subjects, and not only those at an early stage. This un-

erscores the poor discrimination capabilities of the global param-

ters, even when they are combined. By contrast, thanks to our

odeling of the full dynamics of ( V x, V y ), our approach obtains, on
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Table 12 

Classification rates obtained with global parameters, and with full dynamics, encoded by the temporal clusters 

(Medoids). 

Features Classifier Learning set Validation Set 

Global (Average) ( V x , V y ) LDA 55.9% 51.9% 

Global (Average) { V x , V y } + { A x , A y } + { J x , J y } LDA 52% 50% 

Full dynamics (Trajectory) { V x ( n ) ,V y ( n )} Bayes’ Classifier 83.2 ± 0.7% 74 ± 3% 
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validation, a classification rate of 74.3%, which brings an improve-

ment margin of 50% over these global schemes. This is remarkable

given that we consider only velocity in comparison to the combi-

nation above of velocity, acceleration, and jerk. This shows that the

velocity full dynamics is a good parameter for discriminating ES-

AD from HC , as it considers the changes of the velocity trajectory

throughout the loop. In sharp contrast to global parametrization,

this enables the discovery of subtle changes in the writing styles,

occurring at different movement (and location) phases. 

Although our approach outperforms the state of the art by a

high margin, it is in its promising phase only, as there still re-

mains a gap of 25% to perfect classification. This gap, however, can

be significantly narrowed if the data increase. Our dataset of 54

persons is still very small, compared to the ones used for hand-

writing recognition, consisting of thousands of samples, or if we

take into account the heterogeneity of each cognitive profile. We

have shown extensively in this paper, that HC and ES-AD comprise,

each, several subgroups of subjects with clearly different fine mo-

tor skills. To ensure robust classification, therefore, each subgroup

needs to be represented by a sufficient number of subjects. As an

example, in our results above, the ES-AD subjects still maintain-

ing their fine motor skills, and the HC subjects failing to maintain

theirs, are likely to be misclassified given their respective small

number. The same applies to other subgroups not sufficiently rep-

resented in the training data. It is to be expected that, by enrolling

new subjects in the study –the acquisition campaign in the Broca

hospital is continuing to this date–, the classification rates would

go up accordingly. 

It is worth to stress that our Bayesian approach, coupled to

the K-medoids temporal clustering of the loops, remains fully ex-

plainable. The classifier decision can be understood in a top-down

manner by first comparing the a posteriori probabilities of the

two classes, which can be broken, each, into the product of the

class-conditional probabilities of the subject’s loops. The values of

these loop-based probabilities can, in turn, be easily understood

by checking the frequency of the loops from each class in each

medoid-based cluster. Finally, the visualization of the clusters –

Fig. 15 illustrates an example for the three-class scenario– gives

insights on the types of writing styles shared by all the cognitive

profiles, and on those specific to cognitive profile declines. Such

interpretability is of utmost importance to the medical staff. For

instance, a neurologist that understands how the automatic classi-

fication system generates its decision, based on the subject’s data,

is likely to be convinced by the usefulness of such a system, and to

be interested in integrating it as an aid-to-decision tool. Moreover,

the medical staff can also provide an informed feedback on how to

potentially improve the decision system, based on its expertise. 

6. Conclusion & perspectives 

We proposed in this paper a novel paradigm for studying hand-

writing changes due to cognitive decline associated with MCI and

early-stage Alzheimer, or to aging. Our work has addressed two

major limitations of the state of the art, the assumption of a

unique behavioral trend for each cognitive profile, and the encod-

ing of the HW spatiotemporal dynamics by simple global parame-

ters. First, we relax the one per-class behavioral pattern restriction
y allowing, for each, the emergence of a multimodal behavioral

attern reflecting the diversity of behaviors within a given health

ondition. We achieve this by performing unsupervised or semi-

upervised learning to uncover homogeneous groups of subjects,

nd then we analyze how much information these clusters carry

bout the cognitive profiles (or age groups). Second, instead of re-

ying on global (mostly average) kinematic parameters, we refine

he coarse encoding, first by a semi-global parameterization, and

hen by modeling the full dynamics of each parameter. To illus-

rate the power of our paradigm, we presented three studies, one

egarding age, and two regarding Alzheimer’s disease. 

Regarding our age study, unlike previous works reporting only

ne pattern of HW change with aging, our first study, based on a

emiglobal feature parametrization scheme unveils, in an unsuper-

ised way, three major aging HW styles, one specific to aged peo-

le and two shared with other age groups. In our second study,

hrough a semi-supervised learning based on the same semiglobal

arametrization, a striking finding is revealed: two major clusters

re uncovered, one dominated by HC and MCI subjects, and one

ominated by MCI and ES-AD , thus highlighting that MCI patients

ave fine motor skills leaning towards either HC ’s or ES-AD ’s. 

In the third approach, our novel modeling of the full dynam-

cs of HW units allowed to harness the rich temporal information

nherently characterizing online HW. For each raw kinematic pa-

ameter, our approach can learn feature representations [6] instead

f considering handcrafted global or semi-global features, assumed

mplicitly to be discriminant. Our scheme allows a representation

earning from sequences, which is barely addressed in the state of

he art, as it is suitable for sequential data from which temporal

eature representations are to be uncovered. As a comparison, cur-

ent sequential deep learning models [25,31] , including end-to-end

ersions like CNN / MLP → LSTM [83,30] , leave the task of static fea-

ure learning to CNN or MLP, LSTM ( RNN ) taking charge of the se-

uential modeling. Such an approach would not be applied in our

ase, as it is fully supervised, and second because temporal , not

tatic, features are to be uncovered from the sequences themselves.

Applied to loops represented by their velocity time series, our

emporal representation learning uncovers a rich set of features si-

ultaneously as a byproduct of the unsupervised learning itself,

y automatically extracting several loop prototypes, each consist-

ng of a different combination of features like the full velocity pro-

le, size, slant, fluidity, and shakiness. By considering a two-stage

lustering based on the distribution of each user’s input over the

oop prototypes, we uncover again two major clusters, one lean-

ng towards HC and one to ES-AD , with MCI subjects distributed

ver the two clusters in comparable proportions. We have shown

hat this bimodal behavioral trend of MCI is coherent with age and

MSE metadata, found to be higher and lower respectively in the

econd cluster, which strongly suggests that the MCI subjects gath-

red with ES-AD ’s are likely to be more cognitively impaired than

hose with HC ’s. Although this finding has also been unveiled by

ur second study as well, it was discovered here based only the

elocity trajectory, instead of the large set of spatiotemporal fea-

ures considered in the semi-global parametrization scheme. We

lso have shown that our sequential representation learning can be

arnessed for classification through a Bayesian formalism aggregat-

ng probabilistically the contributions of the loop prototypes; this
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pproach outperforms with a large margin state of the art meth-

ds based on discriminant classifiers, taking as input a set of global

eatures. 

A key advantage of our temporal representation learning is that

t is fully explainable. It does not only automatically extract new

W features for characterizing ES-AD , that can be visualized and

asily understood, but it also detects clusters and obtains classi-

cation results that are naturally explainable to the medical staff.

his is a highly desirable property for health professionals, as they

an better exploit and integrate such a system with other aid–to–

ecision tools. 

In terms of perspectives, our work opens the door for several

uture directions, whether short term or mid to long term. At the

hort term, we have considered, in our modeling of the spatiotem-

oral full dynamics, only velocity trajectory. A straightforward im-

rovement is to consider this modeling also for the other spa-

iotemporal parameters like, acceleration, jerk, pressure, etc., and

o fuse the results from these streams. In the same spirit, the fu-

ion can take place at the task level. Combining the input the

riter produces for different tasks (loops, text to copy, free text,

nd drawings) will uncover potential writing impairments under

ifferent contexts, thus increasing discrimination between ES-AD,

CI and HC subjects. 

On another side, although our results are already promising,

nd are expected to improve based on the two fusion levels men-

ioned above, we should assess additional metadata that were not

onsidered as non-inclusion factors, such as the subject’s education

evel and frequency of handwriting in daily life. Our dataset can

e seen as a snapshot at a particular time for each person, and al-

hough our assumption is that these factors are expected to be sta-

istically similar for the three cognitive profiles, they may actually

nduce bias in our study. To circumvent this problem, two strate-

ies can be conjointly adopted. The first is to increase significantly

he size of the dataset to ensure that each cognitive profile covers

ufficiently all the factors such as the two above. Acquiring a large

ataset in our health context, however, is extremely difficult, as

xplained in the introduction, and requires a large timeline dura-

ion. The second strategy is to consider a longitudinal study where

he different methods proposed in this paper can be assessed for

he subjects at two different sessions, separated by a time period

etween 12 to 24 months, for instance. Such a study will focus

n the changes of the writing style of each subject irrespective of

is/her education level, frequency of handwriting, and other meta-

ata of this kind. In doing so, the longitudinal study will implicitly

emove the possible bias introduced by these factors. Moreover, it

ay help assessing the predicting power of our approach by inves-

igating HC subjects that may convert into MCI or ES-AD , or MCI

atients that become ES-AD . 

As our approach is generic and fully data-driven, it can be ap-

lied for characterizing other pathologies. This is because it au-

omatically uncovers the features associated with different health

onditions by an automatic learning of online handwriting data.

he clusters resulting from such learning implicitly encode sev-

ral spatiotemporal features like velocity, jerk, shape, and above

ll, subtle irregularities possibly associated with pathologies, like

arkinson’s or Huntington’s, as long as the data are acquired

rom patients with these pathologies and from healthy controls.

inally, the genericity of our approach makes it also applica-

le in a straightforward manner to non-Latin languages as well

19,29,37,50,51,67,86] . 
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